{"title":"Hamiltonian Carleman approximation and the density property for coadjoint orbits","authors":"F. Deng, E. F. Wold","doi":"10.4310/arkiv.2022.v60.n1.a2","DOIUrl":null,"url":null,"abstract":"For a complex Lie group $G$ with a real form $G_0\\subset G$, we prove that any Hamiltionian automorphism $\\phi$ of a coadjoint orbit $\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
For a complex Lie group $G$ with a real form $G_0\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.