Hamiltonian Carleman approximation and the density property for coadjoint orbits

IF 0.8 4区 数学 Q2 MATHEMATICS
F. Deng, E. F. Wold
{"title":"Hamiltonian Carleman approximation and the density property for coadjoint orbits","authors":"F. Deng, E. F. Wold","doi":"10.4310/arkiv.2022.v60.n1.a2","DOIUrl":null,"url":null,"abstract":"For a complex Lie group $G$ with a real form $G_0\\subset G$, we prove that any Hamiltionian automorphism $\\phi$ of a coadjoint orbit $\\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2022.v60.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For a complex Lie group $G$ with a real form $G_0\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\mathcal O_0$-invariant symplectic automorphism of the corresponding coadjoint orbit of $G$ in the sense of Carleman, provided that $\mathcal O$ is closed. In the course of the proof, we establish the Hamiltonian density property for closed coadjoint orbits of all complex Lie groups.
哈密顿Carleman近似与共点轨道的密度性质
对于具有实数形式$G_0\子集$G$的复李群$G$,证明了$G_0$的共轭轨道$\mathcal O_0$的任意哈密尔自同构$\ φ $,其连通分量是单连通的,可以用$G$对应的共轭轨道$\mathcal O_0$在Carleman意义上的全纯$\mathcal O_0$逼近,只要$\mathcal O$是闭的。在证明过程中,我们建立了所有复李群的闭伴轨道的哈密顿密度性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信