{"title":"Advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment","authors":"Ulhas Sopanrao Kadam , Jong Chan Hong","doi":"10.1016/j.teac.2022.e00184","DOIUrl":null,"url":null,"abstract":"<div><p>Detection of toxic small molecule contaminants with sensitivity, accuracy, and specificity is a challenging task. Traditionally used HPLC and mass spectrometry-based assays suffer from several drawbacks, including lengthy sample preparation, heavy instrumentation, and the need for expert technicians. Specific, measurable, accurate, robust, and time-saving (SMART) biosensors are needed to detect toxic substances. Aptamers provide unique opportunities for the rapid development of SMART biosensors to meet above challenges. Since aptamers are short nucleotide sequences; they are easy for chemical synthesis and functional modifications. Aptamers acquire specific molecule recognition potential through unique chemical bonding, including H-bonds, pi-pi, van der Waals, and hydrophobic interactions. For the discovery of aptamers, the SELEX process is used. Recently, efforts have been made to develop aptamers to detect toxic small molecules like antibiotics, pesticides, insecticides, pollutants, toxins, and allergens. Aptamer technology is a promising tool for analyzing these chemicals from diverse matrices. This review provides an update on advances in nucleic acid-based aptameric sensors for molecular diagnostics of toxic chemical from food, water, human fluids, and the environment.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00184"},"PeriodicalIF":11.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158822000319/pdfft?md5=b25504f726cb93dfcfb6f6f62da7bc7e&pid=1-s2.0-S2214158822000319-main.pdf","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158822000319","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 26
Abstract
Detection of toxic small molecule contaminants with sensitivity, accuracy, and specificity is a challenging task. Traditionally used HPLC and mass spectrometry-based assays suffer from several drawbacks, including lengthy sample preparation, heavy instrumentation, and the need for expert technicians. Specific, measurable, accurate, robust, and time-saving (SMART) biosensors are needed to detect toxic substances. Aptamers provide unique opportunities for the rapid development of SMART biosensors to meet above challenges. Since aptamers are short nucleotide sequences; they are easy for chemical synthesis and functional modifications. Aptamers acquire specific molecule recognition potential through unique chemical bonding, including H-bonds, pi-pi, van der Waals, and hydrophobic interactions. For the discovery of aptamers, the SELEX process is used. Recently, efforts have been made to develop aptamers to detect toxic small molecules like antibiotics, pesticides, insecticides, pollutants, toxins, and allergens. Aptamer technology is a promising tool for analyzing these chemicals from diverse matrices. This review provides an update on advances in nucleic acid-based aptameric sensors for molecular diagnostics of toxic chemical from food, water, human fluids, and the environment.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.