Predictors of clinically significant prostate cancer in biopsy-naïve and prior negative biopsy men with a negative prostate MRI: improving MRI-based screening with a novel risk calculator
L. V. van Riel, A. Jager, D. Meijer, A. Postema, R. Smit, A. Vis, T. D. de Reijke, H. Beerlage, J. Oddens
{"title":"Predictors of clinically significant prostate cancer in biopsy-naïve and prior negative biopsy men with a negative prostate MRI: improving MRI-based screening with a novel risk calculator","authors":"L. V. van Riel, A. Jager, D. Meijer, A. Postema, R. Smit, A. Vis, T. D. de Reijke, H. Beerlage, J. Oddens","doi":"10.1177/17562872221088536","DOIUrl":null,"url":null,"abstract":"Purpose: A pre-biopsy decision aid is needed to counsel men with a clinical suspicion for clinically significant prostate cancer (csPCa), despite normal prostate magnetic resonance imaging (MRI). Methods: A risk calculator (RC) for csPCa (International Society of Urological Pathology grade group (ISUP) ⩾ 2) presence in men with a negative-MRI (Prostate Imaging–Reporting and Data System (PI-RADS) ⩽ 2) was developed, and its performance was compared with RCs of the European Randomized Study of Screening for Prostate Cancer (ERSPC), Prostate Biopsy Collaborative Group (PBCG), and Prospective Loyola University mpMRI (PLUM). All biopsy-naïve and prior negative biopsy men with a negative-MRI followed by systematic prostate biopsy were included from October 2015 to September 2021. The RC was developed using multivariable logistic regression with the following parameters: age (years), family history of PCa (first- or second-degree family member), ancestry (African Caribbean/other), digital rectal exam (benign/malignant), MRI field strength (1.5/3.0 Tesla), prior negative biopsy status, and prostate-specific antigen (PSA) density (ng/ml/cc). Performance of RCs was compared using receiver operating characteristic (ROC) curve analysis. Results: A total of 232 men were included for analysis, of which 18.1% had csPCa. Parameters associated with csPCa were family history of PCa (p < 0.0001), African Caribbean ancestry (p = 0.005), PSA density (p = 0.002), prior negative biopsy (p = 0.06), and age at biopsy (p = 0.157). The area under the curve (AUC) of the developed RC was 0.76 (95% CI 0.68–0.85). This was significantly better than the RCs of the ERSPC (AUC: 0.59; p = 0.001) and PBCG (AUC: 0.60; p = 0.002), yet similar to PLUM (AUC: 0.69; p = 0.09). Conclusion: The developed RC (Prostate Biopsy Cohort Amsterdam (‘PROBA’ RC), integrated predictors for csPCa at prostate biopsy in negative-MRI men and outperformed other widely used RCs. These findings require external validation before introduction in daily practice.","PeriodicalId":23010,"journal":{"name":"Therapeutic Advances in Urology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562872221088536","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Purpose: A pre-biopsy decision aid is needed to counsel men with a clinical suspicion for clinically significant prostate cancer (csPCa), despite normal prostate magnetic resonance imaging (MRI). Methods: A risk calculator (RC) for csPCa (International Society of Urological Pathology grade group (ISUP) ⩾ 2) presence in men with a negative-MRI (Prostate Imaging–Reporting and Data System (PI-RADS) ⩽ 2) was developed, and its performance was compared with RCs of the European Randomized Study of Screening for Prostate Cancer (ERSPC), Prostate Biopsy Collaborative Group (PBCG), and Prospective Loyola University mpMRI (PLUM). All biopsy-naïve and prior negative biopsy men with a negative-MRI followed by systematic prostate biopsy were included from October 2015 to September 2021. The RC was developed using multivariable logistic regression with the following parameters: age (years), family history of PCa (first- or second-degree family member), ancestry (African Caribbean/other), digital rectal exam (benign/malignant), MRI field strength (1.5/3.0 Tesla), prior negative biopsy status, and prostate-specific antigen (PSA) density (ng/ml/cc). Performance of RCs was compared using receiver operating characteristic (ROC) curve analysis. Results: A total of 232 men were included for analysis, of which 18.1% had csPCa. Parameters associated with csPCa were family history of PCa (p < 0.0001), African Caribbean ancestry (p = 0.005), PSA density (p = 0.002), prior negative biopsy (p = 0.06), and age at biopsy (p = 0.157). The area under the curve (AUC) of the developed RC was 0.76 (95% CI 0.68–0.85). This was significantly better than the RCs of the ERSPC (AUC: 0.59; p = 0.001) and PBCG (AUC: 0.60; p = 0.002), yet similar to PLUM (AUC: 0.69; p = 0.09). Conclusion: The developed RC (Prostate Biopsy Cohort Amsterdam (‘PROBA’ RC), integrated predictors for csPCa at prostate biopsy in negative-MRI men and outperformed other widely used RCs. These findings require external validation before introduction in daily practice.
期刊介绍:
Therapeutic Advances in Urology delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of urology.
The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in urology, providing a forum in print and online for publishing the highest quality articles in this area. The editors welcome articles of current interest across all areas of urology, including treatment of urological disorders, with a focus on emerging pharmacological therapies.