Robust estimation of fixed effect parameters and variances of linear mixed models: the minimum density power divergence approach

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Giovanni Saraceno, Abhik Ghosh, Ayanendranath Basu, Claudio Agostinelli
{"title":"Robust estimation of fixed effect parameters and variances of linear mixed models: the minimum density power divergence approach","authors":"Giovanni Saraceno,&nbsp;Abhik Ghosh,&nbsp;Ayanendranath Basu,&nbsp;Claudio Agostinelli","doi":"10.1007/s10182-023-00473-z","DOIUrl":null,"url":null,"abstract":"<div><p>Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter <span>\\(\\alpha\\)</span> is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of <span>\\(\\alpha\\)</span>, with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"108 1","pages":"127 - 157"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-023-00473-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00473-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non-identically distributed observations for LMMs according to the variance components model. We prove that the theoretical properties hold, including consistency and asymptotic normality of the estimators. The influence function and sensitivity measures are computed to explore the robustness properties. As a data-based choice of the MDPDE tuning parameter \(\alpha\) is very important, we propose two candidates as “optimal” choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of \(\alpha\), with S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.

Abstract Image

线性混合模型固定效应参数和方差的稳健估计:最小密度功率散度法
许多现实生活中的数据集都可以使用线性混合模型(LMM)进行分析。由于这些模型通常基于正态性假设,因此在模型出现微小偏差的情况下,用经典方法估计相关参数时,推理可能会非常不稳定。另一方面,密度幂发散(DPD)系列测量两个概率密度函数之间的差异,已被成功用于建立稳健的估计器,其稳定性高,效率损失最小。在此,我们根据方差分量模型,为 LMM 的独立但非同分布观测值开发了最小 DPD 估计器(MDPDE)。我们证明了理论特性的成立,包括估计器的一致性和渐近正态性。我们还计算了影响函数和敏感性度量,以探索鲁棒性特性。由于基于数据选择 MDPDE 调整参数 (\α)非常重要,我们提出了两个候选的 "最优 "选择,这里的最优是指选择特定数据集所需的最强降权。我们进行了一项模拟研究,在考虑到不同污染水平的情况下,针对不同的 \(\alpha)值,比较了所提出的 MDPDE 与 S-估计器、M-估计器和经典的最大似然估计器。最后,我们在一个真实数据实例中说明了我们建议的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信