基于极端随机树方法的WRF-CMAQ-MOS模型研究

Q2 Engineering
黄丛吾, 陈报章, 马超群, 王体健
{"title":"基于极端随机树方法的WRF-CMAQ-MOS模型研究","authors":"黄丛吾, 陈报章, 马超群, 王体健","doi":"10.11676/qxxb2018.036","DOIUrl":null,"url":null,"abstract":"随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。","PeriodicalId":50890,"journal":{"name":"Acta Meteorologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Meteorologica Sinica","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11676/qxxb2018.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。
Research on WRF-CMAQ-MOS Model Based on Extreme Random Tree Method
随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Meteorologica Sinica
Acta Meteorologica Sinica 地学-气象与大气科学
CiteScore
1.46
自引率
0.00%
发文量
4250
审稿时长
6 months
期刊介绍: Journal of Meteorological Research publishes research that advances observation, modeling, and forecasting/prediction of weather and climate, as well as related topics in earth system sciences. Covers both basic and applied dynamics, physics, and chemistry of the atmosphere and its interfaces. A Springer co-sponsored journal focused on speed of submission and review, service, and integrity. Official journal of the Chinese Meteorological Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信