{"title":"Stronger arithmetic equivalence","authors":"Shachar Lovett","doi":"10.19086/da.8654","DOIUrl":null,"url":null,"abstract":"This paper considers two alternative strengthenings of the notion of arithmetic equivalence, which the author calls local integral equivalence and solvable equivalence. (The latter turns out to be strictly stronger than the former.) They have the advantage of being easier to check than Prasad’s notion, which the author calls integral equivalence. Furthermore, solvable equivalence, which the author shows does not imply integral equivalence, is nevertheless a sufficient condition to imply that the invariants considered by Prasad are equal. This opens the door to easier proofs of Prasad’s result, and lessens the reliance on Scott’s construction: the author finds a generalization of this construction that yields infinitely many examples of solvable equivalence. The paper also contains several examples to clarify the relationships between the various different notions of equivalence. Some of these examples (which are mainly found with the help of a computer) answer open questions from the group theory literature.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/da.8654","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 34
Abstract
This paper considers two alternative strengthenings of the notion of arithmetic equivalence, which the author calls local integral equivalence and solvable equivalence. (The latter turns out to be strictly stronger than the former.) They have the advantage of being easier to check than Prasad’s notion, which the author calls integral equivalence. Furthermore, solvable equivalence, which the author shows does not imply integral equivalence, is nevertheless a sufficient condition to imply that the invariants considered by Prasad are equal. This opens the door to easier proofs of Prasad’s result, and lessens the reliance on Scott’s construction: the author finds a generalization of this construction that yields infinitely many examples of solvable equivalence. The paper also contains several examples to clarify the relationships between the various different notions of equivalence. Some of these examples (which are mainly found with the help of a computer) answer open questions from the group theory literature.
期刊介绍:
Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.