S. Yu. Sokolov, W. H. Geissler, A. S. Abramova, D. A. Ryzhova, I. S. Patina
{"title":"Flat Spots within Cenozoic Sediments of the Nansen Basin, Arctic Ocean: Indicators for Serpentinization, Gas Generation and Accumulation Processes","authors":"S. Yu. Sokolov, W. H. Geissler, A. S. Abramova, D. A. Ryzhova, I. S. Patina","doi":"10.1134/S0024490222060074","DOIUrl":null,"url":null,"abstract":"<p>Flat spot anomalies in the Quaternary part of the section of the Nansen Basin are imaged in seismic records and are interpreted to be related to gas-rich fluid accumulations. The flat spots are mainly located above basement highs between magnetic spreading anomalies C20 (~43 Ma) and C12 (~33 Ma). The complex morphometric analysis of flat spots show that serpentinization processes identified from modelling of gravity anomalies could be original gas source. This process also makes smoothing of the basement highs amplitudes. The depth of the top of the flat spots below the seafloor has an almost constant value of ~390 m indicating the ascent of gases from variable basement depths to a common subsurface fluid trap. The depth of the anomalies below the seafloor corresponds to a theoretical thickness of gas hydrate stability zone in the studied region. Gravity modeling along the Arktika-2011-03 section showed the position of the upper mantle blocks with lower (to 2.95 g/cm<sup>3</sup>) density within the highs of the acoustic basement. The flat spot anomalies occur above basement highs, below which blocks with lower density typical of serpentinized rocks are modelled. Thus, the serpentinization of the upper mantle ultramafic rocks is considered a main geochemical process, which can explain generation and accumulation of gas in oceanic abyss at a 1–3 km thick sedimentary cover, as well as small vertical movements of the basement blocks due to density reduction and expansion of serpentinized rock.</p>","PeriodicalId":18150,"journal":{"name":"Lithology and Mineral Resources","volume":"58 1","pages":"1 - 15"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithology and Mineral Resources","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0024490222060074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flat spot anomalies in the Quaternary part of the section of the Nansen Basin are imaged in seismic records and are interpreted to be related to gas-rich fluid accumulations. The flat spots are mainly located above basement highs between magnetic spreading anomalies C20 (~43 Ma) and C12 (~33 Ma). The complex morphometric analysis of flat spots show that serpentinization processes identified from modelling of gravity anomalies could be original gas source. This process also makes smoothing of the basement highs amplitudes. The depth of the top of the flat spots below the seafloor has an almost constant value of ~390 m indicating the ascent of gases from variable basement depths to a common subsurface fluid trap. The depth of the anomalies below the seafloor corresponds to a theoretical thickness of gas hydrate stability zone in the studied region. Gravity modeling along the Arktika-2011-03 section showed the position of the upper mantle blocks with lower (to 2.95 g/cm3) density within the highs of the acoustic basement. The flat spot anomalies occur above basement highs, below which blocks with lower density typical of serpentinized rocks are modelled. Thus, the serpentinization of the upper mantle ultramafic rocks is considered a main geochemical process, which can explain generation and accumulation of gas in oceanic abyss at a 1–3 km thick sedimentary cover, as well as small vertical movements of the basement blocks due to density reduction and expansion of serpentinized rock.
期刊介绍:
Lithology and Mineral Resources is an international peer reviewed journal that publishes articles on a wide range of problems related to the formation of sedimentary rocks and ores. Special attention is given to comparison of ancient sedimentary rock and ore formation with present-day processes. The major part of the journal is devoted to comparative analysis of sedimentary processes on the continents and in oceans, as well as the genetic aspects of the formation of sedimentary and hydrothermal–sedimentary mineral resources. The journal welcomes manuscripts from all countries in the English or Russian language.