X. Jiang, Jianhao Li, Bo Li, Wei-shuai Yin, Li Sun, Xiangyong Chen
{"title":"Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system","authors":"X. Jiang, Jianhao Li, Bo Li, Wei-shuai Yin, Li Sun, Xiangyong Chen","doi":"10.1515/ijnsns-2021-0393","DOIUrl":null,"url":null,"abstract":"Abstract This paper discusses the complex dynamic behavior of a novel chaotic system, which was firstly established by introducing a memristor into a similar Chen’s system. Then by choosing a as the key parameter, we analyze the stability of memristor system based on eigenvalue theory. It is also found that when a cross some critical values, the system can exhibit Neimark–Sacker bifurcation and chaos behaviors. Some numerical simulations including phase diagrams and maximum Lyapunov exponent graph of the memristor-based systems are presented to verify the existence of chaos attractors. Finally, to make the results of this paper useful in the actual situation, such as the design of chaos security algorithm, analog electronic circuit of memristor chaotic system is designed.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0393","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract This paper discusses the complex dynamic behavior of a novel chaotic system, which was firstly established by introducing a memristor into a similar Chen’s system. Then by choosing a as the key parameter, we analyze the stability of memristor system based on eigenvalue theory. It is also found that when a cross some critical values, the system can exhibit Neimark–Sacker bifurcation and chaos behaviors. Some numerical simulations including phase diagrams and maximum Lyapunov exponent graph of the memristor-based systems are presented to verify the existence of chaos attractors. Finally, to make the results of this paper useful in the actual situation, such as the design of chaos security algorithm, analog electronic circuit of memristor chaotic system is designed.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.