Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
X. Jiang, Jianhao Li, Bo Li, Wei-shuai Yin, Li Sun, Xiangyong Chen
{"title":"Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system","authors":"X. Jiang, Jianhao Li, Bo Li, Wei-shuai Yin, Li Sun, Xiangyong Chen","doi":"10.1515/ijnsns-2021-0393","DOIUrl":null,"url":null,"abstract":"Abstract This paper discusses the complex dynamic behavior of a novel chaotic system, which was firstly established by introducing a memristor into a similar Chen’s system. Then by choosing a as the key parameter, we analyze the stability of memristor system based on eigenvalue theory. It is also found that when a cross some critical values, the system can exhibit Neimark–Sacker bifurcation and chaos behaviors. Some numerical simulations including phase diagrams and maximum Lyapunov exponent graph of the memristor-based systems are presented to verify the existence of chaos attractors. Finally, to make the results of this paper useful in the actual situation, such as the design of chaos security algorithm, analog electronic circuit of memristor chaotic system is designed.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0393","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract This paper discusses the complex dynamic behavior of a novel chaotic system, which was firstly established by introducing a memristor into a similar Chen’s system. Then by choosing a as the key parameter, we analyze the stability of memristor system based on eigenvalue theory. It is also found that when a cross some critical values, the system can exhibit Neimark–Sacker bifurcation and chaos behaviors. Some numerical simulations including phase diagrams and maximum Lyapunov exponent graph of the memristor-based systems are presented to verify the existence of chaos attractors. Finally, to make the results of this paper useful in the actual situation, such as the design of chaos security algorithm, analog electronic circuit of memristor chaotic system is designed.
一种新的四维忆阻器系统的分岔、混沌和电路实现
摘要本文讨论了一个新的混沌系统的复杂动力学行为,该系统是通过在类似的Chen系统中引入忆阻器而首次建立的。然后选择a作为关键参数,基于特征值理论对忆阻器系统的稳定性进行了分析。研究还发现,当一个系统越过一些临界值时,系统会表现出Neimark–Sacker分岔和混沌行为。通过对基于忆阻器的系统的相图和最大李雅普诺夫指数图等数值模拟,验证了混沌吸引子的存在性。最后,为了使本文的结果在实际情况中有用,例如混沌安全算法的设计,设计了忆阻器混沌系统的模拟电子电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信