{"title":"Microbial peroxide-producing cell coupled in-situ enzymatic depolymerization for lignin biorefinery","authors":"Dhruva Mukhopadhyay, Rakesh Kumar Sharma, Pratima Gupta","doi":"10.1002/fuce.202200101","DOIUrl":null,"url":null,"abstract":"<p>Lignin is one of the most versatile and complex macromolecules, which can be converted to value-added products such as p-coumaric acid and vanillin upon depolymerization. The current work explored oxidative lignin depolymerization in a microbial peroxide-producing cell containing manganese peroxidase enzymes. A double-chambered microbial peroxide-producing cell was constructed containing the immobilized manganese peroxidase on alginate beads in the cathode chamber, while the anodic chamber contained wastewater. This setup was run for 8 days after the addition of lignin in the catholyte. The voltage measured in the circuit was 0.491 V while the current and power densities were 223 µA/cm<sup>2</sup> and 110 µW/cm<sup>2</sup>, respectively on the 8th day of the experiment. The maximum H<sub>2</sub>O<sub>2</sub> concentration observed was 1.5 mM on the 6th day. Depolymerization of lignin was confirmed by the change in the significant peaks at 280 nm of the ultraviolet-visible spectrum. A change in the signature regions of β-β linkages and β-O-4 linkages in the Fourier-transform infrared spectrum was also observed. Liquid chromatography–quadrupole time of flight–mass spectrometry analysis revealed the presence of compounds including isoeugenol, acetovanillone, methacrylic acid, phenamacril, diofenolan, and jasmolin identified as the product of lignin depolymerization.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
Abstract
Lignin is one of the most versatile and complex macromolecules, which can be converted to value-added products such as p-coumaric acid and vanillin upon depolymerization. The current work explored oxidative lignin depolymerization in a microbial peroxide-producing cell containing manganese peroxidase enzymes. A double-chambered microbial peroxide-producing cell was constructed containing the immobilized manganese peroxidase on alginate beads in the cathode chamber, while the anodic chamber contained wastewater. This setup was run for 8 days after the addition of lignin in the catholyte. The voltage measured in the circuit was 0.491 V while the current and power densities were 223 µA/cm2 and 110 µW/cm2, respectively on the 8th day of the experiment. The maximum H2O2 concentration observed was 1.5 mM on the 6th day. Depolymerization of lignin was confirmed by the change in the significant peaks at 280 nm of the ultraviolet-visible spectrum. A change in the signature regions of β-β linkages and β-O-4 linkages in the Fourier-transform infrared spectrum was also observed. Liquid chromatography–quadrupole time of flight–mass spectrometry analysis revealed the presence of compounds including isoeugenol, acetovanillone, methacrylic acid, phenamacril, diofenolan, and jasmolin identified as the product of lignin depolymerization.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.