Microbial peroxide-producing cell coupled in-situ enzymatic depolymerization for lignin biorefinery

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2022-12-18 DOI:10.1002/fuce.202200101
Dhruva Mukhopadhyay, Rakesh Kumar Sharma, Pratima Gupta
{"title":"Microbial peroxide-producing cell coupled in-situ enzymatic depolymerization for lignin biorefinery","authors":"Dhruva Mukhopadhyay,&nbsp;Rakesh Kumar Sharma,&nbsp;Pratima Gupta","doi":"10.1002/fuce.202200101","DOIUrl":null,"url":null,"abstract":"<p>Lignin is one of the most versatile and complex macromolecules, which can be converted to value-added products such as p-coumaric acid and vanillin upon depolymerization. The current work explored oxidative lignin depolymerization in a microbial peroxide-producing cell containing manganese peroxidase enzymes. A double-chambered microbial peroxide-producing cell was constructed containing the immobilized manganese peroxidase on alginate beads in the cathode chamber, while the anodic chamber contained wastewater. This setup was run for 8 days after the addition of lignin in the catholyte. The voltage measured in the circuit was 0.491 V while the current and power densities were 223 µA/cm<sup>2</sup> and 110 µW/cm<sup>2</sup>, respectively on the 8th day of the experiment. The maximum H<sub>2</sub>O<sub>2</sub> concentration observed was 1.5 mM on the 6th day. Depolymerization of lignin was confirmed by the change in the significant peaks at 280 nm of the ultraviolet-visible spectrum. A change in the signature regions of β-β linkages and β-O-4 linkages in the Fourier-transform infrared spectrum was also observed. Liquid chromatography–quadrupole time of flight–mass spectrometry analysis revealed the presence of compounds including isoeugenol, acetovanillone, methacrylic acid, phenamacril, diofenolan, and jasmolin identified as the product of lignin depolymerization.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Lignin is one of the most versatile and complex macromolecules, which can be converted to value-added products such as p-coumaric acid and vanillin upon depolymerization. The current work explored oxidative lignin depolymerization in a microbial peroxide-producing cell containing manganese peroxidase enzymes. A double-chambered microbial peroxide-producing cell was constructed containing the immobilized manganese peroxidase on alginate beads in the cathode chamber, while the anodic chamber contained wastewater. This setup was run for 8 days after the addition of lignin in the catholyte. The voltage measured in the circuit was 0.491 V while the current and power densities were 223 µA/cm2 and 110 µW/cm2, respectively on the 8th day of the experiment. The maximum H2O2 concentration observed was 1.5 mM on the 6th day. Depolymerization of lignin was confirmed by the change in the significant peaks at 280 nm of the ultraviolet-visible spectrum. A change in the signature regions of β-β linkages and β-O-4 linkages in the Fourier-transform infrared spectrum was also observed. Liquid chromatography–quadrupole time of flight–mass spectrometry analysis revealed the presence of compounds including isoeugenol, acetovanillone, methacrylic acid, phenamacril, diofenolan, and jasmolin identified as the product of lignin depolymerization.

微生物过氧化物产生细胞原位酶促解聚用于木质素生物炼制
木质素是用途最广、结构最复杂的大分子之一,解聚后可转化为对香豆酸和香兰素等高附加值产品。目前的工作是在含有锰过氧化物酶的微生物过氧化生成细胞中探索氧化木质素解聚。构建了双室微生物过氧化氢生成细胞,阴极室将固定化锰过氧化物酶固定在海藻酸珠上,而阳极室则含有废水。在阴极液中加入木质素后,该装置运行了8天。实验第8天,电路测得电压为0.491 V,电流密度为223µA/cm2,功率密度为110µW/cm2。第6天H2O2浓度最高为1.5 mM。在紫外可见光谱280 nm处的显著峰的变化证实了木质素的解聚作用。在傅里叶变换红外光谱中,β - β键和β - O - 4键的特征区也发生了变化。液相色谱-四极杆飞行时间-质谱分析显示,木质素解聚产物中含有异丁香酚、乙酰香兰酮、甲基丙烯酸、非那马克利、双酚兰和茉莉素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信