Geometric void-multiscale model for evaluating the effect of bead width and layer height on voids in FDM parts

IF 3.4 4区 工程技术 Q1 ENGINEERING, MECHANICAL
T. Sheikh, K. Behdinan
{"title":"Geometric void-multiscale model for evaluating the effect of bead width and layer height on voids in FDM parts","authors":"T. Sheikh, K. Behdinan","doi":"10.1108/rpj-01-2023-0013","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height, on the voids concentration (volume) and subsequently calculate the final mechanical properties of the fused deposition modeling parts at constant infill.\n\n\nDesign/methodology/approach\nA geometric model of the voids inside the representative volume element (RVE) is combined with a two-scale asymptotic homogenization method. The RVEs are subjected to periodic boundary conditions solved by finite element (FE) to calculate the effective mechanical properties of the corresponding RVEs. The results are validated with literature and experiments.\n\n\nFindings\nBead width from 0.2 to 0.3 mm, reported a decrease of 25% and 24% void volume for a constant layer height (0.1 and 0.2 mm – 75% infill). It is reported that the void’s volume increased up to 14%, 32% and 36% for 75%, 50% and 25% infill by varying layer height (0.1–0.2  and 0.3 mm), respectively. For elastic modulus, 14%, 9% and 10% increase is reported when the void’s volume is decreased from 0.3 to 0.1 mm at a constant 75% infill density. The bead width and layer height have an inverse effect on voids volume.\n\n\nOriginality/value\nThis work brings values: a multiscale-geometric model capable of predicting the voids controllability by varying interraster distance, layer height and bead width. The idealized RVE generation slicer software and Solidworks save time and cost (<10 min, $0). The proposed model can effectively compute the mechanical properties together with the voids analysis.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-01-2023-0013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose This paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height, on the voids concentration (volume) and subsequently calculate the final mechanical properties of the fused deposition modeling parts at constant infill. Design/methodology/approach A geometric model of the voids inside the representative volume element (RVE) is combined with a two-scale asymptotic homogenization method. The RVEs are subjected to periodic boundary conditions solved by finite element (FE) to calculate the effective mechanical properties of the corresponding RVEs. The results are validated with literature and experiments. Findings Bead width from 0.2 to 0.3 mm, reported a decrease of 25% and 24% void volume for a constant layer height (0.1 and 0.2 mm – 75% infill). It is reported that the void’s volume increased up to 14%, 32% and 36% for 75%, 50% and 25% infill by varying layer height (0.1–0.2  and 0.3 mm), respectively. For elastic modulus, 14%, 9% and 10% increase is reported when the void’s volume is decreased from 0.3 to 0.1 mm at a constant 75% infill density. The bead width and layer height have an inverse effect on voids volume. Originality/value This work brings values: a multiscale-geometric model capable of predicting the voids controllability by varying interraster distance, layer height and bead width. The idealized RVE generation slicer software and Solidworks save time and cost (<10 min, $0). The proposed model can effectively compute the mechanical properties together with the voids analysis.
基于几何孔洞-多尺度模型的FDM零件中焊头宽度和层高对孔洞影响的评价
本文旨在建立一个几何空洞模型,并结合多尺度方法来评估栅格间距、栅格宽度和层高对空洞浓度(体积)的影响,从而计算在恒定填充下熔融沉积建模部件的最终力学性能。设计/方法/方法将代表性体积元(RVE)内部空隙的几何模型与二尺度渐近均匀化方法相结合。采用有限元法求解周期边界条件,计算相应结构的有效力学性能。结果得到了文献和实验的验证。研究发现,当层高(0.1和0.2 mm - 75%填充)不变时,珠层宽度从0.2到0.3 mm,空隙体积分别减少了25%和24%。当填充量为75%、50%和25%时(0.1 ~ 0.2 mm和0.3 mm),孔隙体积分别增大14%、32%和36%。当填充密度为75%时,当孔隙体积从0.3 mm减小到0.1 mm时,弹性模量增加了14%、9%和10%。磁珠宽度和层高对孔洞体积有相反的影响。独创性/价值本工作带来的价值:一个多尺度几何模型,能够通过改变栅格间距,层高和珠宽来预测空洞的可控性。理想的RVE生成切片机软件和Solidworks节省时间和成本(<10分钟,$0)。该模型能有效地计算孔洞的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rapid Prototyping Journal
Rapid Prototyping Journal 工程技术-材料科学:综合
CiteScore
8.30
自引率
10.30%
发文量
137
审稿时长
4.6 months
期刊介绍: Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area. -Benchmarking – certification and qualification in AM- Mass customisation in AM- Design for AM- Materials aspects- Reviews of processes/applications- CAD and other software aspects- Enhancement of existing processes- Integration with design process- Management implications- New AM processes- Novel applications of AM parts- AM for tooling- Medical applications- Reverse engineering in relation to AM- Additive & Subtractive hybrid manufacturing- Industrialisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信