Inverse coefficient problem for the time-fractional diffusion equation

D. Durdiev
{"title":"Inverse coefficient problem for the time-fractional diffusion equation","authors":"D. Durdiev","doi":"10.32523/2306-6172-2021-9-1-44-54","DOIUrl":null,"url":null,"abstract":"We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-1-44-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the inverse problem of determining the time depending reaction diffu- sion coefficient in the Cauchy problem for the time-fractional diffusion equation by a single observation at the point x = 0 of the diffusion process. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation is used and properties of this solution are investigated. The fundamental solution contains the Fox’s H− functions widely used in fractional calculus. In particular, using estimates of the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown coefficient which will be used in study inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven. Also the stability estimate is obtained.
分享
查看原文
时间分数扩散方程的反系数问题
我们研究了通过在扩散过程的x=0点的一次观测来确定时间分数扩散方程的Cauchy问题中与时间相关的反应扩散系数的反问题。为了表示直接问题的解,使用了时间分数扩散方程的基本解,并研究了该解的性质。基本解包含在分数演算中广泛使用的Fox的H−函数。特别地,使用基本解及其导数的估计,根据将用于研究反问题的未知系数的范数来获得直接问题的解的估计。将反问题简化为等价积分方程。为了求解这个方程,应用了收缩映射原理。证明了局部存在性和全局唯一性的结果。还获得了稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信