Anjitha Sarachandra Kumar Geetha, Tomas Mikoviny, Felix Piel, Armin Wisthaler
{"title":"Room temperature rate coefficients for the reaction of chlorine atoms with a series of volatile methylsiloxanes (L2-L5, D3-D6)","authors":"Anjitha Sarachandra Kumar Geetha, Tomas Mikoviny, Felix Piel, Armin Wisthaler","doi":"10.1002/kin.21657","DOIUrl":null,"url":null,"abstract":"<p>The kinetics of chlorine (Cl) atom reactions with a series of volatile methylsiloxanes (VMS) including hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were investigated in relative rate experiments at room temperature and atmospheric pressure. The experiments were carried out in a 0.2 m<sup>3</sup> PFA Teflon chamber, employing proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) as the chemical-analytical tool. The following relative and absolute reaction rate coefficients were obtained using isoprene as reference compound (<i>k<sub>VMS</sub>/k<sub>isoprene</sub></i>; <i>k<sub>VMS</sub></i> × 10<sup>10</sup> cm<sup>3</sup> molec<sup>−1</sup> s <sup>−1</sup>): L2 (0.32 ± 0.02; 1.31 ± 0.21), L3 (0.38 ± 0.00; 1.56 ± 0.23), L4 (0.48 ± 0.01; 1.98 ± 0.29), L5 (0.54 ± 0.03; 2.22 ± 0.34), D3 (0.14 ± 0.02; 0.56 ± 0.13), D4 (0.26 ± 0.01; 1.05 ± 0.16), D5 (0.36 ± 0.02; 1.46 ± 0.22), D6 (0.39 ± 0.02; 1.61 ± 0.25). The following relative and absolute reaction rate coefficients were obtained using toluene as reference compound (<i>k<sub>VMS</sub>/k<sub>toluene</sub></i>; <i>k<sub>VMS</sub></i> × 10<sup>10</sup> cm<sup>3</sup> molec<sup>−1</sup> s <sup>−1</sup>): L2 (1.59 ± 0.18; 0.95 ± 0.14), L3 (2.25 ± 0.14; 1.35 ± 0.16), L4 (2.38 ± 0.01; 1.43 ± 0.14), L5 (3.57 ± 0.11; 2.14 ± 0.22), D3 (0.87 ± 0.01; 0.52 ± 0.05), D4 (1.48 ± 0.12; 0.89 ± 0.11), D5 (2.02 ± 0.15; 1.21 ± 0.15), D6 (2.54 ± 0.11; 1.52 ± 0.17). Our data confirm that reactions with Cl atoms need to be taken into account when assessing the decomposition of VMS in Cl-rich tropospheric environments.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21657","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21657","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The kinetics of chlorine (Cl) atom reactions with a series of volatile methylsiloxanes (VMS) including hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were investigated in relative rate experiments at room temperature and atmospheric pressure. The experiments were carried out in a 0.2 m3 PFA Teflon chamber, employing proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) as the chemical-analytical tool. The following relative and absolute reaction rate coefficients were obtained using isoprene as reference compound (kVMS/kisoprene; kVMS × 1010 cm3 molec−1 s −1): L2 (0.32 ± 0.02; 1.31 ± 0.21), L3 (0.38 ± 0.00; 1.56 ± 0.23), L4 (0.48 ± 0.01; 1.98 ± 0.29), L5 (0.54 ± 0.03; 2.22 ± 0.34), D3 (0.14 ± 0.02; 0.56 ± 0.13), D4 (0.26 ± 0.01; 1.05 ± 0.16), D5 (0.36 ± 0.02; 1.46 ± 0.22), D6 (0.39 ± 0.02; 1.61 ± 0.25). The following relative and absolute reaction rate coefficients were obtained using toluene as reference compound (kVMS/ktoluene; kVMS × 1010 cm3 molec−1 s −1): L2 (1.59 ± 0.18; 0.95 ± 0.14), L3 (2.25 ± 0.14; 1.35 ± 0.16), L4 (2.38 ± 0.01; 1.43 ± 0.14), L5 (3.57 ± 0.11; 2.14 ± 0.22), D3 (0.87 ± 0.01; 0.52 ± 0.05), D4 (1.48 ± 0.12; 0.89 ± 0.11), D5 (2.02 ± 0.15; 1.21 ± 0.15), D6 (2.54 ± 0.11; 1.52 ± 0.17). Our data confirm that reactions with Cl atoms need to be taken into account when assessing the decomposition of VMS in Cl-rich tropospheric environments.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.