{"title":"Enhancing sonocatalytic dye pollutant degradation using MoS2/RGO nanocomposites: An optimization study","authors":"Farid Ahani , Maisam Jalaly , Javad Moghaddam , Mohammad Hossein Rasoulifard","doi":"10.1016/j.wri.2023.100223","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on the synthesis of MoS<sub>2</sub>/RGO nanocomposite, which serves as an efficient sonocatalyst, using a simple one-step hydrothermal method. The MoS<sub>2</sub>/RGO was characterized through various techniques including X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectrometry, diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) spectroscopy. A comprehensive investigation into the sonocatalytic degradation efficiency of methylene blue (MB) dye was conducted under different conditions using design of experiment (DOE) approach. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize the key operational parameters, namely initial dye concentration, catalyst dosage, ultrasonic power, sonication time, and pH. The reliability of the model was assessed using analysis of variance. Under the optimal conditions of 20 mg/L initial MB concentration, catalyst dosage of 0.5 g/L, 67 W ultrasonic power, sonication time of 28 min, and pH of 7, a remarkable MB degradation efficiency of 99% was achieved. Hydroxyl radical (<sup>●</sup>OH) were identified as the main radical species in the sonoluminescence reaction. Additionally, the sonocatalyst demonstrated an excellent reusability, with approximately 95% retention of the degradation efficiency observed over five sonocatalysis cycles.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100223"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371723000239/pdfft?md5=fba9b7eb4373cbea7d1712cb1180bc33&pid=1-s2.0-S2212371723000239-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371723000239","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1
Abstract
This research focuses on the synthesis of MoS2/RGO nanocomposite, which serves as an efficient sonocatalyst, using a simple one-step hydrothermal method. The MoS2/RGO was characterized through various techniques including X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectrometry, diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) spectroscopy. A comprehensive investigation into the sonocatalytic degradation efficiency of methylene blue (MB) dye was conducted under different conditions using design of experiment (DOE) approach. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize the key operational parameters, namely initial dye concentration, catalyst dosage, ultrasonic power, sonication time, and pH. The reliability of the model was assessed using analysis of variance. Under the optimal conditions of 20 mg/L initial MB concentration, catalyst dosage of 0.5 g/L, 67 W ultrasonic power, sonication time of 28 min, and pH of 7, a remarkable MB degradation efficiency of 99% was achieved. Hydroxyl radical (●OH) were identified as the main radical species in the sonoluminescence reaction. Additionally, the sonocatalyst demonstrated an excellent reusability, with approximately 95% retention of the degradation efficiency observed over five sonocatalysis cycles.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry