{"title":"Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis","authors":"Lihao Liu, Q. Dou, Hao Chen, J. Qin, P. Heng","doi":"10.1109/TMI.2019.2934577","DOIUrl":null,"url":null,"abstract":"Lung cancer is the leading cause of cancer deaths worldwide and early diagnosis of lung nodule is of great importance for therapeutic treatment and saving lives. Automated lung nodule analysis requires both accurate lung nodule benign-malignant classification and attribute score regression. However, this is quite challenging due to the considerable difficulty of lung nodule heterogeneity modeling and the limited discrimination capability on ambiguous cases. To solve these challenges, we propose a Multi-Task deep model with Margin Ranking loss (referred as MTMR-Net) for automated lung nodule analysis. Compared to existing methods which consider these two tasks separately, the relatedness between lung nodule classification and attribute score regression is explicitly explored in a cause-and-effect manner within our multi-task deep model, which can contribute to the performance gains of both tasks. The results of different tasks can be yielded simultaneously for assisting the radiologists in diagnosis interpretation. Furthermore, a Siamese network with a margin ranking loss is elaborately designed to enhance the discrimination capability on ambiguous nodule cases. To further explore the internal relationship between two tasks and validate the effectiveness of the proposed model, we use the recursive feature elimination method to iteratively rank the most malignancy-related features. We validate the efficacy of our method MTMR-Net on the public benchmark LIDC-IDRI dataset. Extensive experiments show that the diagnosis results with internal relationship explicitly explored in our model has met some similar patterns in clinical usage and also demonstrate that our approach can achieve competitive classification performance and more accurate scoring on attributes over the state-of-the-arts. Codes are publicly available at: https://github.com/CaptainWilliam/MTMR-NET.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"39 1","pages":"718-728"},"PeriodicalIF":8.9000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMI.2019.2934577","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TMI.2019.2934577","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 79
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and early diagnosis of lung nodule is of great importance for therapeutic treatment and saving lives. Automated lung nodule analysis requires both accurate lung nodule benign-malignant classification and attribute score regression. However, this is quite challenging due to the considerable difficulty of lung nodule heterogeneity modeling and the limited discrimination capability on ambiguous cases. To solve these challenges, we propose a Multi-Task deep model with Margin Ranking loss (referred as MTMR-Net) for automated lung nodule analysis. Compared to existing methods which consider these two tasks separately, the relatedness between lung nodule classification and attribute score regression is explicitly explored in a cause-and-effect manner within our multi-task deep model, which can contribute to the performance gains of both tasks. The results of different tasks can be yielded simultaneously for assisting the radiologists in diagnosis interpretation. Furthermore, a Siamese network with a margin ranking loss is elaborately designed to enhance the discrimination capability on ambiguous nodule cases. To further explore the internal relationship between two tasks and validate the effectiveness of the proposed model, we use the recursive feature elimination method to iteratively rank the most malignancy-related features. We validate the efficacy of our method MTMR-Net on the public benchmark LIDC-IDRI dataset. Extensive experiments show that the diagnosis results with internal relationship explicitly explored in our model has met some similar patterns in clinical usage and also demonstrate that our approach can achieve competitive classification performance and more accurate scoring on attributes over the state-of-the-arts. Codes are publicly available at: https://github.com/CaptainWilliam/MTMR-NET.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.