Planar random-cluster model: scaling relations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
H. Duminil-Copin, I. Manolescu
{"title":"Planar random-cluster model: scaling relations","authors":"H. Duminil-Copin, I. Manolescu","doi":"10.1017/fmp.2022.16","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the critical and near-critical regimes of the planar random-cluster model on \n$\\mathbb Z^2$\n with cluster-weight \n$q\\in [1,4]$\n using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents \n$\\beta $\n , \n$\\gamma $\n , \n$\\delta $\n , \n$\\eta $\n , \n$\\nu $\n , \n$\\zeta $\n as well as \n$\\alpha $\n (when \n$\\alpha \\ge 0$\n ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent \n$\\iota $\n replacing the four-arm event exponent \n$\\xi _4$\n .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract This paper studies the critical and near-critical regimes of the planar random-cluster model on $\mathbb Z^2$ with cluster-weight $q\in [1,4]$ using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents $\beta $ , $\gamma $ , $\delta $ , $\eta $ , $\nu $ , $\zeta $ as well as $\alpha $ (when $\alpha \ge 0$ ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten’s classical scaling relation for Bernoulli percolation involving the ‘mixing rate’ critical exponent $\iota $ replacing the four-arm event exponent $\xi _4$ .
平面随机聚类模型:尺度关系
摘要本文利用新的耦合技术研究了簇权重为$q\in[1,4]$的$\mathbb Z^2上平面随机簇模型的临界和近临界状态。更准确地说,我们导出了临界指数$\beta$、$\gamma$、$\delta$、$\eta$、$s\nu$、$\ zeta$以及$\alpha$(当$\alpha \ge为0时)之间的比例关系。作为一个关键输入,我们使用对混合速率方面的边缘影响概念的新解释,展示了近临界状态下交叉概率的稳定性。作为副产品,我们导出了伯努利渗流的Kesten经典标度关系的推广,涉及“混合速率”临界指数$\iota$代替四臂事件指数$\neneneba xi _4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信