Emerging antibacterial nanozymes for wound healing.

Smart medicine Pub Date : 2023-02-19 eCollection Date: 2023-08-01 DOI:10.1002/SMMD.20220025
Jingyang Shan, Junyi Che, Chuanhui Song, Yuanjin Zhao
{"title":"Emerging antibacterial nanozymes for wound healing.","authors":"Jingyang Shan, Junyi Che, Chuanhui Song, Yuanjin Zhao","doi":"10.1002/SMMD.20220025","DOIUrl":null,"url":null,"abstract":"<p><p>Wound infections continuously impose a huge economic and social burden on public healthcare. Despite the effective treatment of bacteria-infected wounds after using traditional antibiotics, the misuse of antibiotics usually causes the spread of bacterial resistance and decreases therapeutic outcomes. Therefore, the development of efficient antibacterial agents is urgently needed. Nanozymes, as a new generation of artificial enzymes, combine the intrinsic abilities of nanomaterials and natural enzymes. Recently, nanozymes has been widely developed to kill bacteria and treat wound infections by catalyzing the generation of various reactive oxygen species. Thus, this new concept of \"antibacterial nanozymes\" will promote the further advances of connecting nanozymes and bacterial elimination. To highlight these achievements, we summarize different types of antibacterial nanozymes for wound healing. It is believed that such a promising therapeutic strategy of developing antibacterial nanozymes will make a great contribution in the field of skin regeneration. We expect that antibacterial nanozymes will play the significant roles in both basic research and clinical applications.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220025"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wound infections continuously impose a huge economic and social burden on public healthcare. Despite the effective treatment of bacteria-infected wounds after using traditional antibiotics, the misuse of antibiotics usually causes the spread of bacterial resistance and decreases therapeutic outcomes. Therefore, the development of efficient antibacterial agents is urgently needed. Nanozymes, as a new generation of artificial enzymes, combine the intrinsic abilities of nanomaterials and natural enzymes. Recently, nanozymes has been widely developed to kill bacteria and treat wound infections by catalyzing the generation of various reactive oxygen species. Thus, this new concept of "antibacterial nanozymes" will promote the further advances of connecting nanozymes and bacterial elimination. To highlight these achievements, we summarize different types of antibacterial nanozymes for wound healing. It is believed that such a promising therapeutic strategy of developing antibacterial nanozymes will make a great contribution in the field of skin regeneration. We expect that antibacterial nanozymes will play the significant roles in both basic research and clinical applications.

新兴的用于伤口愈合的抗菌纳米酶
伤口感染不断给公共医疗保健带来巨大的经济和社会负担。尽管使用传统抗生素可以有效治疗细菌感染的伤口,但抗生素的滥用通常会导致细菌耐药性的传播并降低治疗效果。因此,迫切需要开发高效的抗菌药物。纳米酶是新一代的人工酶,它结合了纳米材料和天然酶的特性。近年来,纳米酶已被广泛开发用于通过催化各种活性氧的产生来杀死细菌和治疗伤口感染。因此,“抗菌纳米酶”的新概念将促进纳米酶与细菌消除的进一步发展。为了突出这些成果,我们总结了不同类型的抗菌纳米酶用于伤口愈合。相信开发抗菌纳米酶这一有前景的治疗策略将在皮肤再生领域做出巨大贡献。我们期待抗菌纳米酶在基础研究和临床应用中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信