{"title":"Particle swarm optimization of a neural network model for predicting the flashover voltage on polluted cap and pin insulator","authors":"Belkebir Amel, Bourek Yacine, Benguesmia Hani","doi":"10.29354/diag/154051","DOIUrl":null,"url":null,"abstract":"This paper proposes training an artificial neural network (ANN) by a particle swarm optimization (PSO) technique to predict the flashover voltage of outdoor insulators. The analysis follows a series of real-world tests on high-voltage insulators to form a database for implementing artificial intelligence concepts. These tests are performed in various degrees of artificial contamination (distilled brine). Each contamination level shows the amount of contamination in milliliters per area of the isolator. The acquisition database provides values of flashover voltage corresponding to their electrical conductivity in each isolation zone and different degrees of artificial contamination. The results show that ANN trained by PSO can not only provide better prediction results, but also reduce the amount of computation efforts. It is also a more powerful model because: it does not get stuck in a local optimum. In addition, it also has the advantages of simple logic, simple implementation, and underlying intelligence. Compared to the results obtained by practical tests, the results obtained present that the PSO-ANN technique is very effective to predict flashover of high-voltage polluted insulators.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/154051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes training an artificial neural network (ANN) by a particle swarm optimization (PSO) technique to predict the flashover voltage of outdoor insulators. The analysis follows a series of real-world tests on high-voltage insulators to form a database for implementing artificial intelligence concepts. These tests are performed in various degrees of artificial contamination (distilled brine). Each contamination level shows the amount of contamination in milliliters per area of the isolator. The acquisition database provides values of flashover voltage corresponding to their electrical conductivity in each isolation zone and different degrees of artificial contamination. The results show that ANN trained by PSO can not only provide better prediction results, but also reduce the amount of computation efforts. It is also a more powerful model because: it does not get stuck in a local optimum. In addition, it also has the advantages of simple logic, simple implementation, and underlying intelligence. Compared to the results obtained by practical tests, the results obtained present that the PSO-ANN technique is very effective to predict flashover of high-voltage polluted insulators.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.