Computing quantities of interest and their uncertainty using Bayesian simulation

IF 2.5 2区 社会学 Q1 POLITICAL SCIENCE
A. Murr, Richard Traunmüller, J. Gill
{"title":"Computing quantities of interest and their uncertainty using Bayesian simulation","authors":"A. Murr, Richard Traunmüller, J. Gill","doi":"10.1017/psrm.2022.18","DOIUrl":null,"url":null,"abstract":"\n When analyzing data, researchers are often less interested in the parameters of statistical models than in functions of these parameters such as predicted values. Here we show that Bayesian simulation with Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncertainty. We illustrate how to produce customary and relatively new quantities of interest such as variable importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics to allow researchers to report more informative results.","PeriodicalId":47311,"journal":{"name":"Political Science Research and Methods","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Science Research and Methods","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/psrm.2022.18","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

When analyzing data, researchers are often less interested in the parameters of statistical models than in functions of these parameters such as predicted values. Here we show that Bayesian simulation with Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncertainty. We illustrate how to produce customary and relatively new quantities of interest such as variable importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics to allow researchers to report more informative results.
利用贝叶斯模拟计算兴趣量及其不确定性
在分析数据时,研究人员往往对统计模型的参数不太感兴趣,而更感兴趣的是这些参数的函数,如预测值。在这里,我们展示了使用马尔可夫链蒙特卡罗工具的贝叶斯模拟可以很容易地计算这些具有不确定性的感兴趣量。我们说明了如何产生习惯的和相对较新的兴趣量,如变量重要性排名、后验预测数据、困难边际效应和模型比较统计,以允许研究人员报告更多信息的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信