Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, S. Floquet
{"title":"Clifford Algebras, Quantum Neural Networks and Generalized Quantum Fourier Transform","authors":"Marco A. S. Trindade,&nbsp;Vinícius N. A. Lula-Rocha,&nbsp;S. Floquet","doi":"10.1007/s00006-023-01279-7","DOIUrl":null,"url":null,"abstract":"<div><p>We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-023-01279-7.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01279-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We propose models of quantum perceptrons and quantum neural networks based on Clifford algebras. These models are capable to capture geometric features of classical and quantum data as well as producing data entanglement. Due to their representations in terms of Pauli matrices, the Clifford algebras seem to be a natural framework for multidimensional data analysis in a quantum setting. In this context, the implementation of activation functions, and unitary learning rules are discussed. In this scheme, we also provide an algebraic generalization of the quantum Fourier transform containing additional parameters that allow performing quantum machine learning based on variational algorithms. Furthermore, some interesting properties of the generalized quantum Fourier transform have been proved.

Abstract Image

Clifford代数,量子神经网络和广义量子傅里叶变换
我们提出了基于Clifford代数的量子感知器和量子神经网络模型。这些模型能够捕捉经典和量子数据的几何特征,并产生数据纠缠。由于它们用泡利矩阵表示,Clifford代数似乎是量子环境中多维数据分析的自然框架。在此背景下,讨论了激活函数和统一学习规则的实现。在该方案中,我们还提供了量子傅立叶变换的代数推广,该代数推广包含允许基于变分算法执行量子机器学习的附加参数。此外,还证明了广义量子傅立叶变换的一些有趣性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信