Inertial Iteration Scheme for Approximating Fixed Points of Lipschitz Pseudocontractive Maps in Arbitrary Real Banach Spaces

IF 1.4 4区 数学 Q1 MATHEMATICS
P. U. Nwokoro, D. F. Agbebaku, E. E. Chima, A. C. Onah, O. Oguguo, M. Osilike
{"title":"Inertial Iteration Scheme for Approximating Fixed Points of Lipschitz Pseudocontractive Maps in Arbitrary Real Banach Spaces","authors":"P. U. Nwokoro, D. F. Agbebaku, E. E. Chima, A. C. Onah, O. Oguguo, M. Osilike","doi":"10.37193/cjm.2023.01.13","DOIUrl":null,"url":null,"abstract":"\"We study a perturbed inertial Krasnoselskii-Mann-type algorithm and prove that the algorithm is an approximate fixed point sequence for Lipschitz pseudocontractive maps in arbitrary real Banach spaces. Strong convergence results are then established for our inertial iteration scheme for approximation of fixed points of Lipschitz pseudocontractive maps and solutions of certain important accretive-type operator equations in certain real Banach spaces. Implementation of our algorithm is illustrated using numerical examples in both finite and infinite dimensional Banach spaces. Our results improve rate of convergence and extend several related recent results. \"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"We study a perturbed inertial Krasnoselskii-Mann-type algorithm and prove that the algorithm is an approximate fixed point sequence for Lipschitz pseudocontractive maps in arbitrary real Banach spaces. Strong convergence results are then established for our inertial iteration scheme for approximation of fixed points of Lipschitz pseudocontractive maps and solutions of certain important accretive-type operator equations in certain real Banach spaces. Implementation of our algorithm is illustrated using numerical examples in both finite and infinite dimensional Banach spaces. Our results improve rate of convergence and extend several related recent results. "
逼近任意实Banach空间中Lipschitz伪压缩映射不动点的惯性迭代格式
“我们研究了一个扰动的惯性Krasnoselskii-Mann型算法,证明了该算法是任意实Banach空间中Lipschitz伪压缩映射的一个近似不动点序列。然后,我们的近似Lipschitz-伪压缩映射不动点的惯性迭代格式和某些重要增生映射的解得到了强收敛性结果-某些实Banach空间中的类型算子方程。通过有限维和无限维Banach空间中的数值例子说明了我们算法的实现。我们的结果提高了收敛速度,并推广了最近的几个相关结果。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信