{"title":"Building Detection using Two-Layered Novel Convolutional Neural Networks","authors":"P. Karuppusamy","doi":"10.36548/JSCP.2021.1.004","DOIUrl":null,"url":null,"abstract":"In the recent years, there has been a high surge in the use of convolutional neural networks (CNNs) because of the state-of-the art performance in a number of areas like text, audio and video processing. The field of remote sensing applications is however a field that has not fully incorporated the use of CNN. To address this issue, we introduced a novel CNN that can be used to increase the performance of detectors built that use Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). Moreover, in this paper, we have also increased the accuracy of the CNN using two improvements. The first improvement involves feature vector transformation with Euler methodology and combining normalized and raw features. Based on the results observed, we have also performed a comparative study using similar methods and it has been identified that the proposed CNN proves to be an improvement over the others.","PeriodicalId":48202,"journal":{"name":"Journal of Social and Clinical Psychology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Social and Clinical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.36548/JSCP.2021.1.004","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 40
Abstract
In the recent years, there has been a high surge in the use of convolutional neural networks (CNNs) because of the state-of-the art performance in a number of areas like text, audio and video processing. The field of remote sensing applications is however a field that has not fully incorporated the use of CNN. To address this issue, we introduced a novel CNN that can be used to increase the performance of detectors built that use Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). Moreover, in this paper, we have also increased the accuracy of the CNN using two improvements. The first improvement involves feature vector transformation with Euler methodology and combining normalized and raw features. Based on the results observed, we have also performed a comparative study using similar methods and it has been identified that the proposed CNN proves to be an improvement over the others.
期刊介绍:
This journal is devoted to the application of theory and research from social psychology toward the better understanding of human adaptation and adjustment, including both the alleviation of psychological problems and distress (e.g., psychopathology) and the enhancement of psychological well-being among the psychologically healthy. Topics of interest include (but are not limited to) traditionally defined psychopathology (e.g., depression), common emotional and behavioral problems in living (e.g., conflicts in close relationships), the enhancement of subjective well-being, and the processes of psychological change in everyday life (e.g., self-regulation) and professional settings (e.g., psychotherapy and counseling). Articles reporting the results of theory-driven empirical research are given priority, but theoretical articles, review articles, clinical case studies, and essays on professional issues are also welcome. Articles describing the development of new scales (personality or otherwise) or the revision of existing scales are not appropriate for this journal.