{"title":"Maximally edge-connected realizations and Kundu's \n \n \n k\n \n $k$\n -factor theorem","authors":"James M. Shook","doi":"10.1002/jgt.23017","DOIUrl":null,"url":null,"abstract":"<p>A simple graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with edge-connectivity <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)$</annotation>\n </semantics></math> and minimum degree <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)$</annotation>\n </semantics></math> is maximally edge-connected if <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)=\\delta (G)$</annotation>\n </semantics></math>. In 1964, given a nonincreasing degree sequence <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\pi =({d}_{1},{\\rm{\\ldots }},{d}_{n})$</annotation>\n </semantics></math>, Jack Edmonds showed that there is a realization <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that is <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-edge-connected if and only if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> ${d}_{n}\\ge k$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>n</mi>\n </msubsup>\n \n <msub>\n <mi>d</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{n}{d}_{i}\\ge 2(n-1)$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${d}_{n}=1$</annotation>\n </semantics></math>. We strengthen Edmonds's result by showing that given a realization <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${Z}_{0}$</annotation>\n </semantics></math> is a spanning subgraph of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({Z}_{0})\\ge 1$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>≥</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $| E({Z}_{0})| \\ge n-1$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})=1$</annotation>\n </semantics></math>, then there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${G}_{0}-E({Z}_{0})$</annotation>\n </semantics></math> as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n-1$</annotation>\n </semantics></math> edges. For <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})\\ge 2$</annotation>\n </semantics></math>, if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> has a spanning forest with <math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> components, then our theorem says there is a maximally edge-connected realization that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n <annotation> $n-c$</annotation>\n </semantics></math> edges. As an application we combine our work with Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem to show there is a maximally edge-connected realization with a <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({k}_{1},{\\rm{\\ldots }},{k}_{n})$</annotation>\n </semantics></math>-factor for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $k\\le {k}_{i}\\le k+1$</annotation>\n </semantics></math> and present a partial result to a conjecture that strengthens the regular case of Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 1","pages":"83-97"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A simple graph with edge-connectivity and minimum degree is maximally edge-connected if . In 1964, given a nonincreasing degree sequence , Jack Edmonds showed that there is a realization of that is -edge-connected if and only if with when . We strengthen Edmonds's result by showing that given a realization of if is a spanning subgraph of with such that when , then there is a maximally edge-connected realization of with as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of that differs from by at most edges. For , if has a spanning forest with components, then our theorem says there is a maximally edge-connected realization that differs from by at most edges. As an application we combine our work with Kundu's -factor theorem to show there is a maximally edge-connected realization with a -factor for and present a partial result to a conjecture that strengthens the regular case of Kundu's -factor theorem.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .