Maximally edge-connected realizations and Kundu's k $k$ -factor theorem

IF 0.9 3区 数学 Q2 MATHEMATICS
James M. Shook
{"title":"Maximally edge-connected realizations and Kundu's \n \n \n k\n \n $k$\n -factor theorem","authors":"James M. Shook","doi":"10.1002/jgt.23017","DOIUrl":null,"url":null,"abstract":"<p>A simple graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with edge-connectivity <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)$</annotation>\n </semantics></math> and minimum degree <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)$</annotation>\n </semantics></math> is maximally edge-connected if <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\lambda (G)=\\delta (G)$</annotation>\n </semantics></math>. In 1964, given a nonincreasing degree sequence <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\pi =({d}_{1},{\\rm{\\ldots }},{d}_{n})$</annotation>\n </semantics></math>, Jack Edmonds showed that there is a realization <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that is <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-edge-connected if and only if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mi>k</mi>\n </mrow>\n <annotation> ${d}_{n}\\ge k$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>n</mi>\n </msubsup>\n \n <msub>\n <mi>d</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\sum }_{i=1}^{n}{d}_{i}\\ge 2(n-1)$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n \n <mi>n</mi>\n </msub>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> ${d}_{n}=1$</annotation>\n </semantics></math>. We strengthen Edmonds's result by showing that given a realization <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${Z}_{0}$</annotation>\n </semantics></math> is a spanning subgraph of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({Z}_{0})\\ge 1$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n \n <mo>≥</mo>\n \n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $| E({Z}_{0})| \\ge n-1$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})=1$</annotation>\n </semantics></math>, then there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${G}_{0}-E({Z}_{0})$</annotation>\n </semantics></math> as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n </mrow>\n <annotation> $\\pi $</annotation>\n </semantics></math> that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n-1$</annotation>\n </semantics></math> edges. For <math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $\\delta ({G}_{0})\\ge 2$</annotation>\n </semantics></math>, if <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> has a spanning forest with <math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> components, then our theorem says there is a maximally edge-connected realization that differs from <math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${G}_{0}$</annotation>\n </semantics></math> by at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n <annotation> $n-c$</annotation>\n </semantics></math> edges. As an application we combine our work with Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem to show there is a maximally edge-connected realization with a <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msub>\n <mi>k</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({k}_{1},{\\rm{\\ldots }},{k}_{n})$</annotation>\n </semantics></math>-factor for <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≤</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $k\\le {k}_{i}\\le k+1$</annotation>\n </semantics></math> and present a partial result to a conjecture that strengthens the regular case of Kundu's <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-factor theorem.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 1","pages":"83-97"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A simple graph G $G$ with edge-connectivity λ ( G ) $\lambda (G)$ and minimum degree δ ( G ) $\delta (G)$ is maximally edge-connected if λ ( G ) = δ ( G ) $\lambda (G)=\delta (G)$ . In 1964, given a nonincreasing degree sequence π = ( d 1 , , d n ) $\pi =({d}_{1},{\rm{\ldots }},{d}_{n})$ , Jack Edmonds showed that there is a realization G $G$ of π $\pi $ that is k $k$ -edge-connected if and only if d n k ${d}_{n}\ge k$ with i = 1 n d i 2 ( n 1 ) ${\sum }_{i=1}^{n}{d}_{i}\ge 2(n-1)$ when d n = 1 ${d}_{n}=1$ . We strengthen Edmonds's result by showing that given a realization G 0 ${G}_{0}$ of π $\pi $ if Z 0 ${Z}_{0}$ is a spanning subgraph of G 0 ${G}_{0}$ with δ ( Z 0 ) 1 $\delta ({Z}_{0})\ge 1$ such that E ( Z 0 ) n 1 $| E({Z}_{0})| \ge n-1$ when δ ( G 0 ) = 1 $\delta ({G}_{0})=1$ , then there is a maximally edge-connected realization of π $\pi $ with G 0 E ( Z 0 ) ${G}_{0}-E({Z}_{0})$ as a subgraph. Our theorem tells us that there is a maximally edge-connected realization of π $\pi $ that differs from G 0 ${G}_{0}$ by at most n 1 $n-1$ edges. For δ ( G 0 ) 2 $\delta ({G}_{0})\ge 2$ , if G 0 ${G}_{0}$ has a spanning forest with c $c$ components, then our theorem says there is a maximally edge-connected realization that differs from G 0 ${G}_{0}$ by at most n c $n-c$ edges. As an application we combine our work with Kundu's k $k$ -factor theorem to show there is a maximally edge-connected realization with a ( k 1 , , k n ) $({k}_{1},{\rm{\ldots }},{k}_{n})$ -factor for k k i k + 1 $k\le {k}_{i}\le k+1$ and present a partial result to a conjecture that strengthens the regular case of Kundu's k $k$ -factor theorem.

最大边连通实现和Kundu的k$ k$因子定理
具有边连通性和最小度的简单图是最大边连通的,如果。1964年,在给定一个不递增度序列的情况下,Jack Edmonds证明了存在边连通当且仅当与何时的实现。我们通过证明给定if的实现是with的生成子图,使得当,则作为子图存在with的最大边连通实现,从而加强了Edmonds的结果。我们的定理告诉我们,存在最大边连接的实现,这与最大边不同。因为,如果有一个包含组件的跨越森林,那么我们的定理说,存在一个最大边连接的实现,它与最多边不同。作为一个应用,我们将我们的工作与Kundu因子定理相结合,以证明存在具有因子的最大边连通实现,并给出了一个猜想的部分结果,该猜想加强了Kundu因素定理的正则情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信