Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN

IF 20.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang‐Zhi Hu, Qian Zheng, Xudong Jiang, Gang Pan
{"title":"Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN","authors":"Yang‐Zhi Hu, Qian Zheng, Xudong Jiang, Gang Pan","doi":"10.48550/arXiv.2305.19868","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spiking function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.19868","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spiking function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.
快速snn:基于转换量化神经网络的快速尖峰神经网络
脉冲神经网络(SNNs)由于其事件驱动的表征,在计算和能源效率方面比传统的人工神经网络(ann)具有优势。snn还用加法代替了ann中的权值乘法,这更节能,计算强度更低。然而,由于脉冲函数的离散性,深度snn的训练仍然是一个挑战。规避这一挑战的一种流行方法是ANN-to-SNN转换。然而,由于量化误差和累积误差,通常需要大量的时间步长(高推断延迟)才能达到高性能,这就抵消了SNN的优势。为此,本文提出了以低延迟实现高性能的Fast-SNN。我们展示了snn的时间量化和ANN的空间量化之间的等效映射,并在此基础上将量化误差最小化转移到量化的ANN训练中。随着量化误差的最小化,我们表明序列误差是累积误差的主要原因,通过引入带符号的中频神经元模型和分层微调机制来解决这一问题。我们的方法在各种计算机视觉任务上实现了最先进的性能和低延迟,包括图像分类,目标检测和语义分割。代码可在https://github.com/yangfan-hu/Fast-SNN获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.40
自引率
3.00%
发文量
885
审稿时长
8.5 months
期刊介绍: The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信