In Vitro Coculture of Primary Human Cells to Analyze Angiogenesis, Osteogenesis, and the Inflammatory Response to Newly Developed Osteosynthesis Material for Pediatric Maxillofacial Traumatology: A Potential Pretesting Model before In Vivo Experiments
IF 3.1 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
E. Dohle, Tatjana Fecht, Tobias Wolfram, F. Reinauer, Anke Wunder, Katja Heppe, R. Sader, C. Kirkpatrick, S. Ghanaati
{"title":"In Vitro Coculture of Primary Human Cells to Analyze Angiogenesis, Osteogenesis, and the Inflammatory Response to Newly Developed Osteosynthesis Material for Pediatric Maxillofacial Traumatology: A Potential Pretesting Model before In Vivo Experiments","authors":"E. Dohle, Tatjana Fecht, Tobias Wolfram, F. Reinauer, Anke Wunder, Katja Heppe, R. Sader, C. Kirkpatrick, S. Ghanaati","doi":"10.1155/2023/4040504","DOIUrl":null,"url":null,"abstract":"During the present study, an in vitro coculture bone tissue mimic based on primary osteoblasts and primary endothelial cells was used for a complex and broad evaluation of a newly developed material for applications in pediatric maxillofacial traumatology. The biomaterial was composed of PDLLA (poly(D,L-lactide)) in various combinations with calcium carbonate (CC), magnesium (Mg), and chitosan (CH). Besides classical biocompatibility analyses, the present study evaluated material-dependent effects on fundamental processes that are essential for successful material integration and regeneration. Therefore, inflammation-associated factors such as E-selectin and interleukins were analyzed in the in vitro model system on gene expression and protein level depending on the different materials. Furthermore, in order to test the capability of vascularization of the material, the effect of the different materials on the formation of microvessel-like structures as well as the expression and release of proangiogenic factors was investigated in vitro in the bone coculture model. In addition, the mineralization capacity as well as the relative gene expression of osteogenic differentiation factors was analyzed in response to the different materials. As a result, the authors could assess the material combination PDLLA: CC CH as the most functionally tested material with regard to biocompatibility, inflammatory response, and microvessel-like structure formation as well as osteogenic differentiation in the in vitro coculture system. In conclusion, by using tissue-engineered human bone tissue equivalents as proposed here in an in vitro coculture model, biomaterial-mediated effects can be readily investigated. Moreover, it is proposed that these complex in vitro evaluations could contribute to the understanding and improvement of the development of novel materials for pediatric traumatological care for prospective clinical applications.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4040504","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
During the present study, an in vitro coculture bone tissue mimic based on primary osteoblasts and primary endothelial cells was used for a complex and broad evaluation of a newly developed material for applications in pediatric maxillofacial traumatology. The biomaterial was composed of PDLLA (poly(D,L-lactide)) in various combinations with calcium carbonate (CC), magnesium (Mg), and chitosan (CH). Besides classical biocompatibility analyses, the present study evaluated material-dependent effects on fundamental processes that are essential for successful material integration and regeneration. Therefore, inflammation-associated factors such as E-selectin and interleukins were analyzed in the in vitro model system on gene expression and protein level depending on the different materials. Furthermore, in order to test the capability of vascularization of the material, the effect of the different materials on the formation of microvessel-like structures as well as the expression and release of proangiogenic factors was investigated in vitro in the bone coculture model. In addition, the mineralization capacity as well as the relative gene expression of osteogenic differentiation factors was analyzed in response to the different materials. As a result, the authors could assess the material combination PDLLA: CC CH as the most functionally tested material with regard to biocompatibility, inflammatory response, and microvessel-like structure formation as well as osteogenic differentiation in the in vitro coculture system. In conclusion, by using tissue-engineered human bone tissue equivalents as proposed here in an in vitro coculture model, biomaterial-mediated effects can be readily investigated. Moreover, it is proposed that these complex in vitro evaluations could contribute to the understanding and improvement of the development of novel materials for pediatric traumatological care for prospective clinical applications.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.