{"title":"Device and Algorithm for Vehicle Detection and Traffic Intensity Analysis","authors":"M. Gorobetz, A. Potapov, A. Korneyev, Ivars Alps","doi":"10.2478/ecce-2021-0010","DOIUrl":null,"url":null,"abstract":"Abstract To effectively manage the traffic flow in order to reduce traffic congestion, it is necessary to know the volumes and quantitative indicators of this flow. Various detection methods are known for detecting a vehicle in a lane, which, in turn, have their own advantages and disadvantages. To detect vehicles and analyse traffic intensity, the authors use a pulse coherent radar (PCR) sensor module. Testing of various modes of operation of the radar sensor was carried out to select the optimal mode for detecting vehicles. The paper describes a method for fixing vehicles of different sizes, filtering and separating the vehicle from the traffic flow. The developed vehicle detection device works in conjunction with signal traffic lights, through which traffic control takes place. The signal traffic lights, which have their own sensors and control units, communicate with each other via a radio channel; there is no need for cable laying. The system is designed to work on road maintenance sites. The paper describes the experimental data when testing on a separate section of the road. The experiment showed the advantage of traffic lights (cars passed the regulated traffic light faster) from the point of view of calculating the traffic flow over the normal traffic light operation. Reducing downtime in traffic jams, in turn, has a beneficial effect on the environmental situation, since at the moment internal combustion engines prevail in vehicles.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"17 1","pages":"83 - 92"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2021-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract To effectively manage the traffic flow in order to reduce traffic congestion, it is necessary to know the volumes and quantitative indicators of this flow. Various detection methods are known for detecting a vehicle in a lane, which, in turn, have their own advantages and disadvantages. To detect vehicles and analyse traffic intensity, the authors use a pulse coherent radar (PCR) sensor module. Testing of various modes of operation of the radar sensor was carried out to select the optimal mode for detecting vehicles. The paper describes a method for fixing vehicles of different sizes, filtering and separating the vehicle from the traffic flow. The developed vehicle detection device works in conjunction with signal traffic lights, through which traffic control takes place. The signal traffic lights, which have their own sensors and control units, communicate with each other via a radio channel; there is no need for cable laying. The system is designed to work on road maintenance sites. The paper describes the experimental data when testing on a separate section of the road. The experiment showed the advantage of traffic lights (cars passed the regulated traffic light faster) from the point of view of calculating the traffic flow over the normal traffic light operation. Reducing downtime in traffic jams, in turn, has a beneficial effect on the environmental situation, since at the moment internal combustion engines prevail in vehicles.