{"title":"VIDEO POPULARITY PREDICTION USING STACKED BILSTM LAYERS","authors":"Neeti Sangwan, Vishal Bhatnagar","doi":"10.22452/mjcs.vol34no3.2","DOIUrl":null,"url":null,"abstract":"Social media is now not only limited to being a life event sharing platform, but it also has evolved as a monetary medium. Advertisements showing on popular videos may result in more sales conversion. So it is of utmost interest to predict the popularity of videos before uploading it on the platform. In this research article, we propose a deep learning algorithm to predict the popularity of YouTube videos. With the content and temporal features of the YouTube videos dataset, we use a novel stack of deep learning layers. We validate the approach with state-of-the-art methods and prove that the proposed complex stacked architecture gives more accurate and stable results. Results are also tested for short duration prediction with a different number of reference days after video publishing.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol34no3.2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Social media is now not only limited to being a life event sharing platform, but it also has evolved as a monetary medium. Advertisements showing on popular videos may result in more sales conversion. So it is of utmost interest to predict the popularity of videos before uploading it on the platform. In this research article, we propose a deep learning algorithm to predict the popularity of YouTube videos. With the content and temporal features of the YouTube videos dataset, we use a novel stack of deep learning layers. We validate the approach with state-of-the-art methods and prove that the proposed complex stacked architecture gives more accurate and stable results. Results are also tested for short duration prediction with a different number of reference days after video publishing.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus