On the representation of ordered semigroups by transformations of ordered sets

IF 0.6 4区 数学 Q3 MATHEMATICS
Michael Tsingelis
{"title":"On the representation of ordered semigroups by transformations of ordered sets","authors":"Michael Tsingelis","doi":"10.1007/s00012-023-00810-y","DOIUrl":null,"url":null,"abstract":"<div><p>A transformation of an ordered set <i>M</i> is an isotone mapping of <i>M</i> into <i>M</i>. By a representation of an ordered semigroup <i>S</i> by transformations of an ordered set <i>M</i> we mean a homomorphism of <i>S</i> into the set of transformations of <i>M</i>, i.e. (since the set of transformations of <i>M</i> is an ordered semigroup) an isotone mapping from <i>S</i> into the set of transformations of <i>M</i> preserving the operations. We prove that this type of representation leads to an “action” of <i>S</i> on <i>M</i> and so we introduce the notion of a left operand of <i>M</i> over <i>S</i>. Also we introduce the notions of a left operator pseudoorder on a left operand over <i>S</i> and a left operator homomorphism between left operands over <i>S</i>. We show that the concept of left operator pseudoorders on left operands over <i>S</i> plays an important role in the study of left operator homomorphisms of left operands over <i>S</i>. In the case of right operands over <i>S</i> dually definitions and results hold.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-023-00810-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00810-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A transformation of an ordered set M is an isotone mapping of M into M. By a representation of an ordered semigroup S by transformations of an ordered set M we mean a homomorphism of S into the set of transformations of M, i.e. (since the set of transformations of M is an ordered semigroup) an isotone mapping from S into the set of transformations of M preserving the operations. We prove that this type of representation leads to an “action” of S on M and so we introduce the notion of a left operand of M over S. Also we introduce the notions of a left operator pseudoorder on a left operand over S and a left operator homomorphism between left operands over S. We show that the concept of left operator pseudoorders on left operands over S plays an important role in the study of left operator homomorphisms of left operands over S. In the case of right operands over S dually definitions and results hold.

关于序半群的序集变换表示
有序集M的变换是M到M的同构映射。通过有序集M变换的有序半群S的表示,我们指的是S到M的变换集的同态,即(由于M的变换集合是有序半群)从S到M变换集合的同构映射,保持运算。我们证明了这种类型的表示导致了S在M上的“作用”,因此我们引入了M在S上的左操作数的概念。此外,我们还引入了S上左操作数上的左算子伪序和S上左运算数之间的左算子同态的概念。我们证明了S上左操作数上的左算子伪序的概念在研究S上左运算数的左算子同态中起着重要作用。在S上右操作数的情况下,对偶定义和结果成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信