In-Memory Principal Component Analysis by Crosspoint Array of Resistive Switching Memory: A new hardware approach for energy-efficient data analysis in edge computing

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
P. Mannocci, Andrea Baroni, Enrico Melacarne, C. Zambelli, P. Olivo, E. Pérez, C. Wenger, Daniele Ielmin
{"title":"In-Memory Principal Component Analysis by Crosspoint Array of Resistive Switching Memory: A new hardware approach for energy-efficient data analysis in edge computing","authors":"P. Mannocci, Andrea Baroni, Enrico Melacarne, C. Zambelli, P. Olivo, E. Pérez, C. Wenger, Daniele Ielmin","doi":"10.1109/mnano.2022.3141515","DOIUrl":null,"url":null,"abstract":"In-Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrix-vector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMC-based PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43%, close to floating-point implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":" ","pages":"4-13"},"PeriodicalIF":2.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2022.3141515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

In-Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrix-vector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMC-based PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43%, close to floating-point implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.
基于电阻开关存储器交叉点阵列的内存主成分分析:边缘计算中高效数据分析的一种新硬件方法
内存计算(IMC)是机器学习(ML)中最有前途的数据密集型计算加速器之一。主成分分析(PCA)是一种用于降维和分类的关键机器学习算法,它严重依赖于矩阵向量乘法(MVM),而经典的冯·诺依曼架构并未对其进行优化。在这里,我们提供了一种新的基于imc的PCA算法的实验演示,该算法基于功率迭代和压缩,在4 kbit的电阻开关随机存取存储器(RRAM)阵列中执行。威斯康星乳腺癌数据集的分类准确率达到95.43%,接近浮点实现。我们的模拟表明,与商用gpu相比,能效提高了250倍,从而支持IMC在现代数据密集型计算中的节能ML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信