Dr. Zachary S. Campbell, Steven Baro, Dr. Yunfei Gao, Prof. Fanxing Li, Prof. Milad Abolhasani
{"title":"Flow Synthesis of Single and Mixed Metal Oxides","authors":"Dr. Zachary S. Campbell, Steven Baro, Dr. Yunfei Gao, Prof. Fanxing Li, Prof. Milad Abolhasani","doi":"10.1002/cmtd.202200007","DOIUrl":null,"url":null,"abstract":"<p>A generalizable and versatile microfluidic approach for facile synthesis of a wide range of metal oxide microparticles using atypical metal-organic precursors is reported. Microparticles of three single oxide materials, zinc(II) oxide, tin(IV) oxide, and cerium(IV) oxide, as well as a binary rare earth mixed oxide, lanthanum(III) praseodymium(III) oxide, are synthesized in flow. The tin(IV) oxide is shown to vary in composition from 14.2 % to 0 % orthorhombic phase at annealing temperatures ranging from 500 °C to 900 °C, while the lanthanum(III) praseodymium(III) oxide forms at a relatively low temperature of ∼700 °C.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
A generalizable and versatile microfluidic approach for facile synthesis of a wide range of metal oxide microparticles using atypical metal-organic precursors is reported. Microparticles of three single oxide materials, zinc(II) oxide, tin(IV) oxide, and cerium(IV) oxide, as well as a binary rare earth mixed oxide, lanthanum(III) praseodymium(III) oxide, are synthesized in flow. The tin(IV) oxide is shown to vary in composition from 14.2 % to 0 % orthorhombic phase at annealing temperatures ranging from 500 °C to 900 °C, while the lanthanum(III) praseodymium(III) oxide forms at a relatively low temperature of ∼700 °C.