{"title":"Big Data Analysis and Perturbation using Data Mining Algorithm","authors":"W. Haoxiang, S. Smys","doi":"10.36548/JSCP.2021.1.003","DOIUrl":null,"url":null,"abstract":"The advancement and introduction of computing technologies has proven to be highly effective and has resulted in the production of large amount of data that is to be analyzed. However, there is much concern on the privacy protection of the gathered data which suffers from the possibility of being exploited or exposed to the public. Hence, there are many methods of preserving this information they are not completely scalable or efficient and also have issues with privacy or data utility. Hence this proposed work provides a solution for such issues with an effective perturbation algorithm that uses big data by means of optimal geometric transformation. The proposed work has been examined and tested for accuracy, attack resistance, scalability and efficiency with the help of 5 classification algorithms and 9 datasets. Experimental analysis indicates that the proposed work is more successful in terms of attack resistance, scalability, execution speed and accuracy when compared with other algorithms that are used for privacy preservation.","PeriodicalId":48202,"journal":{"name":"Journal of Social and Clinical Psychology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Social and Clinical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.36548/JSCP.2021.1.003","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 69
Abstract
The advancement and introduction of computing technologies has proven to be highly effective and has resulted in the production of large amount of data that is to be analyzed. However, there is much concern on the privacy protection of the gathered data which suffers from the possibility of being exploited or exposed to the public. Hence, there are many methods of preserving this information they are not completely scalable or efficient and also have issues with privacy or data utility. Hence this proposed work provides a solution for such issues with an effective perturbation algorithm that uses big data by means of optimal geometric transformation. The proposed work has been examined and tested for accuracy, attack resistance, scalability and efficiency with the help of 5 classification algorithms and 9 datasets. Experimental analysis indicates that the proposed work is more successful in terms of attack resistance, scalability, execution speed and accuracy when compared with other algorithms that are used for privacy preservation.
期刊介绍:
This journal is devoted to the application of theory and research from social psychology toward the better understanding of human adaptation and adjustment, including both the alleviation of psychological problems and distress (e.g., psychopathology) and the enhancement of psychological well-being among the psychologically healthy. Topics of interest include (but are not limited to) traditionally defined psychopathology (e.g., depression), common emotional and behavioral problems in living (e.g., conflicts in close relationships), the enhancement of subjective well-being, and the processes of psychological change in everyday life (e.g., self-regulation) and professional settings (e.g., psychotherapy and counseling). Articles reporting the results of theory-driven empirical research are given priority, but theoretical articles, review articles, clinical case studies, and essays on professional issues are also welcome. Articles describing the development of new scales (personality or otherwise) or the revision of existing scales are not appropriate for this journal.