{"title":"Multi-User Redirected Walking in Separate Physical Spaces for Online VR Scenarios","authors":"Sen-Zhe Xu, Jia-Hong Liu, Miao Wang, Fang-Lue Zhang, Songhai Zhang","doi":"10.48550/arXiv.2210.05356","DOIUrl":null,"url":null,"abstract":"With the recent rise of Metaverse, online multiplayer VR applications are becoming increasingly prevalent worldwide. However, as multiple users are located in different physical environments, different reset frequencies and timings can lead to serious fairness issues for online collaborative/competitive VR applications. For the fairness of online VR apps/games, an ideal online RDW strategy must make the locomotion opportunities of different users equal, regardless of different physical environment layouts. The existing RDW methods lack the scheme to coordinate multiple users in different PEs, and thus have the issue of triggering too many resets for all the users under the locomotion fairness constraint. We propose a novel multi-user RDW method that is able to significantly reduce the overall reset number and give users a better immersive experience by providing a fair exploration. Our key idea is to first find out the \"bottleneck\" user that may cause all users to be reset and estimate the time to reset given the users' next targets, and then redirect all the users to favorable poses during that maximized bottleneck time to ensure the subsequent resets can be postponed as much as possible. More particularly, we develop methods to estimate the time of possibly encountering obstacles and the reachable area for a specific pose to enable the prediction of the next reset caused by any user. Our experiments and user study found that our method outperforms existing RDW methods in online VR applications.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05356","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
With the recent rise of Metaverse, online multiplayer VR applications are becoming increasingly prevalent worldwide. However, as multiple users are located in different physical environments, different reset frequencies and timings can lead to serious fairness issues for online collaborative/competitive VR applications. For the fairness of online VR apps/games, an ideal online RDW strategy must make the locomotion opportunities of different users equal, regardless of different physical environment layouts. The existing RDW methods lack the scheme to coordinate multiple users in different PEs, and thus have the issue of triggering too many resets for all the users under the locomotion fairness constraint. We propose a novel multi-user RDW method that is able to significantly reduce the overall reset number and give users a better immersive experience by providing a fair exploration. Our key idea is to first find out the "bottleneck" user that may cause all users to be reset and estimate the time to reset given the users' next targets, and then redirect all the users to favorable poses during that maximized bottleneck time to ensure the subsequent resets can be postponed as much as possible. More particularly, we develop methods to estimate the time of possibly encountering obstacles and the reachable area for a specific pose to enable the prediction of the next reset caused by any user. Our experiments and user study found that our method outperforms existing RDW methods in online VR applications.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.