The geometry of degenerations of Hilbert schemes of points

IF 0.9 1区 数学 Q2 MATHEMATICS
Martin G. Gulbrandsen, L. H. Halle, K. Hulek, Ziyu Zhang
{"title":"The geometry of degenerations of Hilbert schemes of points","authors":"Martin G. Gulbrandsen, L. H. Halle, K. Hulek, Ziyu Zhang","doi":"10.1090/jag/765","DOIUrl":null,"url":null,"abstract":"<p>Given a strict simple degeneration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\colon X\\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the first three authors previously constructed a degeneration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the relative degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Hilbert scheme of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional subschemes. In this paper we investigate the geometry of this degeneration, in particular when the fibre dimension of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this case we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a dlt model. This is even a good minimal dlt model if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\colon X \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has this property. We compute the dual complex of the central fibre <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper I Subscript upper X slash upper C Superscript n Baseline right-parenthesis Subscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(I^n_{X/C})_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and relate this to the essential skeleton of the generic fibre. For a type II degeneration of K3 surfaces we show that the stack <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">I</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal I}^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> carries a nowhere degenerate relative logarithmic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-form. Finally we discuss the relationship of our degeneration with the constructions of Nagai.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/765","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Given a strict simple degeneration f : X C f \colon X\to C the first three authors previously constructed a degeneration I X / C n C I^n_{X/C} \to C of the relative degree n n Hilbert scheme of 0 0 -dimensional subschemes. In this paper we investigate the geometry of this degeneration, in particular when the fibre dimension of f f is at most 2 2 . In this case we show that I X / C n C I^n_{X/C} \to C is a dlt model. This is even a good minimal dlt model if f : X C f \colon X \to C has this property. We compute the dual complex of the central fibre ( I X / C n ) 0 (I^n_{X/C})_0 and relate this to the essential skeleton of the generic fibre. For a type II degeneration of K3 surfaces we show that the stack I X / C n C {\mathcal I}^n_{X/C} \to C carries a nowhere degenerate relative logarithmic 2 2 -form. Finally we discuss the relationship of our degeneration with the constructions of Nagai.

点的希尔伯特格式的退化几何
给定一个严格的简单退化f:X→ 前三位作者先前构建了一个退化的I X/C n→ C I^n_{X/C}\到0维子项的相对次数n的Hilbert格式的C。在本文中,我们研究了这种退化的几何结构,特别是当f的纤维尺寸至多为2 2时。在这种情况下,我们证明了I X/C n→ {X/C}\ to C是一个dlt模型。如果f:X,这甚至是一个很好的最小dlt模型→ C f \冒号X \到C具有此属性。我们计算了中心纤维(IX/Cn)0(I^n_{X/C})_0的对偶复形,并将其与一般纤维的基本骨架联系起来。对于K3表面的II型退化,我们证明了堆叠I X/C n→ C{\mathcal I}^n_{X/C}to C具有无退化的相对对数2-形式。最后,我们讨论了我们的堕落与永井建筑的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信