Martin G. Gulbrandsen, L. H. Halle, K. Hulek, Ziyu Zhang
{"title":"The geometry of degenerations of Hilbert schemes of points","authors":"Martin G. Gulbrandsen, L. H. Halle, K. Hulek, Ziyu Zhang","doi":"10.1090/jag/765","DOIUrl":null,"url":null,"abstract":"<p>Given a strict simple degeneration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\colon X\\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the first three authors previously constructed a degeneration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the relative degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> Hilbert scheme of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional subschemes. In this paper we investigate the geometry of this degeneration, in particular when the fibre dimension of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this case we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">I^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a dlt model. This is even a good minimal dlt model if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper X right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\colon X \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has this property. We compute the dual complex of the central fibre <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper I Subscript upper X slash upper C Superscript n Baseline right-parenthesis Subscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msubsup>\n <mml:mi>I</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(I^n_{X/C})_0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and relate this to the essential skeleton of the generic fibre. For a type II degeneration of K3 surfaces we show that the stack <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper I Subscript upper X slash upper C Superscript n Baseline right-arrow upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">I</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal I}^n_{X/C} \\to C</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> carries a nowhere degenerate relative logarithmic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-form. Finally we discuss the relationship of our degeneration with the constructions of Nagai.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/765","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Given a strict simple degeneration f:X→Cf \colon X\to C the first three authors previously constructed a degeneration IX/Cn→CI^n_{X/C} \to C of the relative degree nn Hilbert scheme of 00-dimensional subschemes. In this paper we investigate the geometry of this degeneration, in particular when the fibre dimension of ff is at most 22. In this case we show that IX/Cn→CI^n_{X/C} \to C is a dlt model. This is even a good minimal dlt model if f:X→Cf \colon X \to C has this property. We compute the dual complex of the central fibre (IX/Cn)0(I^n_{X/C})_0 and relate this to the essential skeleton of the generic fibre. For a type II degeneration of K3 surfaces we show that the stack IX/Cn→C{\mathcal I}^n_{X/C} \to C carries a nowhere degenerate relative logarithmic 22-form. Finally we discuss the relationship of our degeneration with the constructions of Nagai.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.