Generalized Second-Order G-Wolfe Type Fractional Symmetric Program and their Duality Relations under Generalized Assumptions

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Arvind Kumar, Rajnish Kumar, Naresh Kumar, Khursheed Alam, Ramu Dubey
{"title":"Generalized Second-Order G-Wolfe Type Fractional Symmetric Program and their Duality Relations under Generalized Assumptions","authors":"Arvind Kumar, Rajnish Kumar, Naresh Kumar, Khursheed Alam, Ramu Dubey","doi":"10.33889/ijmems.2023.8.1.009","DOIUrl":null,"url":null,"abstract":"In this article, we formulate the concept of generalize bonvexity/pseudobonvexity functions. We formulate duality results for second-order fractional symmetric dual programs of G-Wolfe-type model. In the next section, we explain the duality theorems under generalize bonvexity/pseudobonvexity assumptions. We identify a function lying exclusively in the class of generalize pseudobonvex and not in class of generalize bonvex functions. Our results are more generalized several known results in the literature.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we formulate the concept of generalize bonvexity/pseudobonvexity functions. We formulate duality results for second-order fractional symmetric dual programs of G-Wolfe-type model. In the next section, we explain the duality theorems under generalize bonvexity/pseudobonvexity assumptions. We identify a function lying exclusively in the class of generalize pseudobonvex and not in class of generalize bonvex functions. Our results are more generalized several known results in the literature.
广义二阶G-Wolfe型分数对称规划及其在广义假设下的对偶关系
在本文中,我们提出了广义凸函数/拟凸函数的概念。我们给出了G-Wolfe型模型的二阶分式对称对偶程序的对偶结果。在下一节中,我们将解释在广义凸性/伪凸性假设下的对偶定理。我们确定了一个函数只存在于广义伪凸函数类中,而不存在于广义凸函数类。我们的结果是文献中几个已知结果的更广义结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信