On a geometric combination of functions related to Prékopa–Leindler inequality

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-03-07 DOI:10.1112/mtk.12192
Graziano Crasta, Ilaria Fragalà
{"title":"On a geometric combination of functions related to Prékopa–Leindler inequality","authors":"Graziano Crasta,&nbsp;Ilaria Fragalà","doi":"10.1112/mtk.12192","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new operation between nonnegative integrable functions on <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>, that we call <i>geometric combination</i>; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with <i>n</i> symmetries.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12192","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new operation between nonnegative integrable functions on R n $\mathbb {R}^n$ , that we call geometric combination; it is obtained via a mass transportation approach, playing with inverse distribution functions. The main feature of this operation is that the Lebesgue integral of the geometric combination equals the geometric mean of the two separate integrals; as a natural consequence, we derive a new functional inequality of Prékopa–Leindler type. When applied to the characteristic functions of two measurable sets, their geometric combination provides a set whose volume equals the geometric mean of the two separate volumes. In the framework of convex bodies, by comparing the geometric combination with the 0-sum, we get an alternative proof of the log-Brunn–Minkowski inequality for unconditional convex bodies and for convex bodies with n symmetries.

Abstract Image

关于pracoppa - leindler不等式的函数的几何组合
我们引入了Rn$\mathbb {R}^n$上的非负可积函数之间的一个新运算,我们称之为几何组合;它是通过使用逆分布函数的质量运输方法获得的。这种运算的主要特点是几何组合的勒贝格积分等于两个单独积分的几何平均值;作为一个自然的结果,我们得到了一个新的pr kopa - leindler型函数不等式。当应用于两个可测量集的特征函数时,它们的几何组合提供了一个集,其体积等于两个单独体积的几何平均值。在凸体的框架下,通过与0和的几何组合的比较,我们得到了无条件凸体和n对称凸体的log - Brunn-Minkowski不等式的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信