Explicit Soliton Solutions to the Fractional Order Nonlinear Models through the Atangana Beta Derivative

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Mohammad Asif Arefin, M. Ayesha Khatun, Mohammad Shaiful Islam, M. Ali Akbar, M. Hafiz Uddin
{"title":"Explicit Soliton Solutions to the Fractional Order Nonlinear Models through the Atangana Beta Derivative","authors":"Mohammad Asif Arefin,&nbsp;M. Ayesha Khatun,&nbsp;Mohammad Shaiful Islam,&nbsp;M. Ali Akbar,&nbsp;M. Hafiz Uddin","doi":"10.1007/s10773-023-05400-1","DOIUrl":null,"url":null,"abstract":"<div><p>The nonlinear space-time fractional Cahn-Allen and space-time fractional Benjamin-Bona-Mahony equations have significant applications in the fusion and fission phenomena of solitons, electromagnetic interactions, quantum relativistic atom theory, signal processing, quantum relativistic properties, and phase isolation with an atom in several components bass system. The fractional wave transformation has been used to convert space-time fractional nonlinear equations to integer order equations through the extended Tanh-function method in the sense of Atangana beta derivatives. We have achieved numerous soliton solutions as polynomials of hyperbolic function including solitons solutions like kink type, single soliton, singular kink, spike, periodic, dark soliton, bell type, periodic, and so on by setting arbitrary values of the parameter by using the computational software namely Maple and Mathematica. The different shapes of the solutions are shown graphically in 3D, contour plots, and vector plots. In the beginning, a power series in tanh was used as an ansatz to get analytical solutions of the traveling wave type to some nonlinear evolution equations. Numerous non-rectangular domains are used to solve these nonlinear fractional partial differential equations. The exact solutions indicate that the proposed method is effective, simple, and capable of creating comprehensive soliton solutions for nonlinear models in engineering and mathematical physics.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05400-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The nonlinear space-time fractional Cahn-Allen and space-time fractional Benjamin-Bona-Mahony equations have significant applications in the fusion and fission phenomena of solitons, electromagnetic interactions, quantum relativistic atom theory, signal processing, quantum relativistic properties, and phase isolation with an atom in several components bass system. The fractional wave transformation has been used to convert space-time fractional nonlinear equations to integer order equations through the extended Tanh-function method in the sense of Atangana beta derivatives. We have achieved numerous soliton solutions as polynomials of hyperbolic function including solitons solutions like kink type, single soliton, singular kink, spike, periodic, dark soliton, bell type, periodic, and so on by setting arbitrary values of the parameter by using the computational software namely Maple and Mathematica. The different shapes of the solutions are shown graphically in 3D, contour plots, and vector plots. In the beginning, a power series in tanh was used as an ansatz to get analytical solutions of the traveling wave type to some nonlinear evolution equations. Numerous non-rectangular domains are used to solve these nonlinear fractional partial differential equations. The exact solutions indicate that the proposed method is effective, simple, and capable of creating comprehensive soliton solutions for nonlinear models in engineering and mathematical physics.

分数阶非线性模型的Atangana导数的显式孤子解
非线性时空分数Cahn-Allen方程和时空分数Benjamin-Bona-Mahony方程在孤子的聚变和裂变现象、电磁相互作用、量子相对论原子理论、信号处理、量子相对论性质和多组分低音系统中原子的相位隔离等方面具有重要的应用。利用分数波变换将时空分数阶非线性方程在Atangana导数意义上的扩展tanh函数方法转化为整数阶方程。我们利用Maple和Mathematica计算软件,通过设置参数的任意值,获得了许多双曲函数多项式的孤子解,包括扭型、单扭型、奇异扭型、尖峰型、周期型、暗孤子、钟型、周期型等孤子解。解的不同形状以三维图形、等高线图和矢量图的形式显示。首先,利用tanh中的幂级数作为解析解,得到一些非线性发展方程的行波型解析解。许多非矩形区域被用于求解这些非线性分数阶偏微分方程。精确解表明,该方法简单有效,能够为工程和数学物理中的非线性模型建立全面的孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信