Inhibition of monoamine oxidases by benzimidazole chalcone derivatives

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Athulya Krishna, Jiseong Lee, Sunil Kumar, Sachithra Thazhathuveedu Sudevan, Prerna Uniyal, Leena K. Pappachen, Hoon Kim, Bijo Mathew
{"title":"Inhibition of monoamine oxidases by benzimidazole chalcone derivatives","authors":"Athulya Krishna,&nbsp;Jiseong Lee,&nbsp;Sunil Kumar,&nbsp;Sachithra Thazhathuveedu Sudevan,&nbsp;Prerna Uniyal,&nbsp;Leena K. Pappachen,&nbsp;Hoon Kim,&nbsp;Bijo Mathew","doi":"10.1186/s13765-023-00795-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ten benzimidazole chalcone derivatives were synthesized, and their monoamine oxidase (MAO) inhibitory activity was evaluated. Most compounds showed higher inhibitory activity against MAO-B than MAO-A. Compound BCH2 exhibited an IC<sub>50</sub> value of 0.80 μM, thereby showing the most potent inhibition amongst all. In addition, BCH2 showed the highest MAO-B selectivity index (SI) with an SI value of 44.11 compared to MAO-A. Among the substituents, the halogen group showed the best MAO-B inhibition, and the <i>ortho</i>-position of the B ring showed better inhibitory activity than the <i>para</i>-site. In comparison with <i>ortho</i>-substituents, the inhibitory activity increased in the order, -Cl &gt; -Br &gt; -F &gt; -H. BCH2 was found to be a competitive inhibitor of the enzyme with optimum inhibition kinetics, where K<sub>i</sub> was found to be 0.25 ± 0.014 μM. In the reversibility experiment, BCH2 showed a recovery pattern after MAO-B inhibition, similar to that of lazabemide. Thus, BCH2 is a potent, reversible, and selective MAO-B inhibitor and has been suggested as a candidate for the treatment of neurological disorders.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-023-00795-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-023-00795-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Ten benzimidazole chalcone derivatives were synthesized, and their monoamine oxidase (MAO) inhibitory activity was evaluated. Most compounds showed higher inhibitory activity against MAO-B than MAO-A. Compound BCH2 exhibited an IC50 value of 0.80 μM, thereby showing the most potent inhibition amongst all. In addition, BCH2 showed the highest MAO-B selectivity index (SI) with an SI value of 44.11 compared to MAO-A. Among the substituents, the halogen group showed the best MAO-B inhibition, and the ortho-position of the B ring showed better inhibitory activity than the para-site. In comparison with ortho-substituents, the inhibitory activity increased in the order, -Cl > -Br > -F > -H. BCH2 was found to be a competitive inhibitor of the enzyme with optimum inhibition kinetics, where Ki was found to be 0.25 ± 0.014 μM. In the reversibility experiment, BCH2 showed a recovery pattern after MAO-B inhibition, similar to that of lazabemide. Thus, BCH2 is a potent, reversible, and selective MAO-B inhibitor and has been suggested as a candidate for the treatment of neurological disorders.

苯并咪唑查尔酮衍生物对单胺氧化酶的抑制作用
化合物BCH2的IC50值为0.80 μM,具有最强的抑制作用。与邻取代基相比,抑制活性依次为-Cl > -Br > -F > -H。BCH2是一种具有最佳抑制动力学的竞争性抑制剂,Ki为0.25±0.014 μM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信