{"title":"Smart contract based DDoS attack traceability audit mechanism in intelligent IoT","authors":"Zhuohao Wang, Weiting Zhang, Runhu Wang, Y. Liu, Chenyang Xu, Chengxiao Yu","doi":"10.23919/JCC.fa.2023-0020.202308","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on providing data provenance auditing schemes for distributed denial of service (DDoS) defense in intelligent internet of things (IoT). To achieve effective DDoS defense, we introduce a two-layer collaborative blockchain framework to support data auditing. Specifically, using data scattered among intelligent IoT devices, switch gateways self-assemble a layer of blockchain in the local autonomous system (AS), and the main chain with controller participation can be aggregated by its associated layer of blocks once a cycle, to obtain a global security model. To optimize the processing delay of the security model, we propose a process of data pre-validation with the goal of ensuring data consistency while satisfying overhead requirements. Since the flood of identity spoofing packets, it is difficult to solve the identity consistency of data with traditional detection methods, and accountability cannot be pursued afterwards. Thus, we proposed a Packet Traceback Telemetry (PTT) scheme, based on in-band telemetry, to solve the problem. Specifically, the PTT scheme is executed on the distributed switch side, the controller to schedule and select routing policies. Moreover, a tracing probabilistic optimization is embedded into the PTT scheme to accelerate path reconstruction and save device resources. Simulation results show that the PTT scheme can reconstruct address spoofing packet forward path, reduce the resource consumption compared with existing tracing scheme. Data tracing audit method has fine-grained detection and feasible performance.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"20 1","pages":"54-64"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0020.202308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on providing data provenance auditing schemes for distributed denial of service (DDoS) defense in intelligent internet of things (IoT). To achieve effective DDoS defense, we introduce a two-layer collaborative blockchain framework to support data auditing. Specifically, using data scattered among intelligent IoT devices, switch gateways self-assemble a layer of blockchain in the local autonomous system (AS), and the main chain with controller participation can be aggregated by its associated layer of blocks once a cycle, to obtain a global security model. To optimize the processing delay of the security model, we propose a process of data pre-validation with the goal of ensuring data consistency while satisfying overhead requirements. Since the flood of identity spoofing packets, it is difficult to solve the identity consistency of data with traditional detection methods, and accountability cannot be pursued afterwards. Thus, we proposed a Packet Traceback Telemetry (PTT) scheme, based on in-band telemetry, to solve the problem. Specifically, the PTT scheme is executed on the distributed switch side, the controller to schedule and select routing policies. Moreover, a tracing probabilistic optimization is embedded into the PTT scheme to accelerate path reconstruction and save device resources. Simulation results show that the PTT scheme can reconstruct address spoofing packet forward path, reduce the resource consumption compared with existing tracing scheme. Data tracing audit method has fine-grained detection and feasible performance.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.