Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cuiping Li, Xue Li, Zhu’en Ruan
{"title":"Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review","authors":"Cuiping Li,&nbsp;Xue Li,&nbsp;Zhu’en Ruan","doi":"10.1007/s12613-023-2601-1","DOIUrl":null,"url":null,"abstract":"<div><p>The technology of cemented paste backfill (CPB) is an effective method for green mining. In CPB, mixing is a vital process aiming to prepare a paste that meets the non-stratification, non-segregation, and non-bleeding requirements. As a multiscale granular system, homogenization is one of the challenges in the paste-mixing process. Due to the high shearing, high concentration, and multiscale characteristics, paste exhibits complex rheological properties in the mixing process. An overview of the mesomechanics and structural evolution is presented in this review. The effects of various influencing factors on the paste’s rheological properties were investigated, and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels. The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste. Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 8","pages":"1444 - 1454"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2601-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The technology of cemented paste backfill (CPB) is an effective method for green mining. In CPB, mixing is a vital process aiming to prepare a paste that meets the non-stratification, non-segregation, and non-bleeding requirements. As a multiscale granular system, homogenization is one of the challenges in the paste-mixing process. Due to the high shearing, high concentration, and multiscale characteristics, paste exhibits complex rheological properties in the mixing process. An overview of the mesomechanics and structural evolution is presented in this review. The effects of various influencing factors on the paste’s rheological properties were investigated, and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels. The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste. Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.

胶结膏体充填体混合过程中多尺度颗粒体系流变特性研究进展
胶结膏体充填技术是一种有效的绿色采矿方法。在CPB中,混合是一个至关重要的过程,其目的是制备满足非分层、非分离和不出血要求的膏体。作为一个多尺度的颗粒系统,均匀化是膏体混合过程中的难题之一。膏体由于具有高剪切、高浓度、多尺度等特点,在搅拌过程中表现出复杂的流变特性。本文对细观力学和结构演化进行了综述。研究了各种影响因素对膏体流变性能的影响,从宏观和细观两个层面概述了膏体的流变性能模型。结果表明,力学效应和结构演化是影响膏体流变特性的根本因素。提出了目前存在的问题和未来的发展趋势,以改变CPB过程先行、理论滞后的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信