{"title":"Dynamic processes of dust emission from gobi: A portable wind tunnel study atop the Mogao Grottoes, Dunhuang, China","authors":"Weimin Zhang , Lihai Tan , Linhao Liang , Shuyi Chen , Guobin Zhang , Hongtao Zhan , Fei Qiu , Shaoxiu Ma","doi":"10.1016/j.aeolia.2022.100784","DOIUrl":null,"url":null,"abstract":"<div><p><span>The dynamic process of dust emission from gobi is a largely un-solved scientific question while it is essential for minimizing the dust hazards. In this study, field wind tunnel experiments have been performed to reveal the processes of dust emission from gobi on the top of the Mogao Grottoes. We found that the dust content of gobi is the dominant factor that determines the intensity of dust emission. The vertical PM10 flux increased exponentially with the increase of dust content on the gobi surface at a given </span>wind speed. The impact energy of saltating particles is another control factor of the dust emission flux. The vertical PM10 flux due to saltation bombardment of the external sand supply was 5–13 times larger than that without the bombardment of sand supply. This study indicates that gobi on the top of the Mogao Grottoes is one of the main dust sources as it has an abundance of sand supply from Mingsha Mountain as well as its richness in dust content. Hence, it is imperative to expand the existing sand control system on the top of the Mogao Grottoes in order to minimize the impact of dust hazards on the Mogao Grottoes.</p></div>","PeriodicalId":49246,"journal":{"name":"Aeolian Research","volume":"55 ","pages":"Article 100784"},"PeriodicalIF":3.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeolian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875963722000143","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
The dynamic process of dust emission from gobi is a largely un-solved scientific question while it is essential for minimizing the dust hazards. In this study, field wind tunnel experiments have been performed to reveal the processes of dust emission from gobi on the top of the Mogao Grottoes. We found that the dust content of gobi is the dominant factor that determines the intensity of dust emission. The vertical PM10 flux increased exponentially with the increase of dust content on the gobi surface at a given wind speed. The impact energy of saltating particles is another control factor of the dust emission flux. The vertical PM10 flux due to saltation bombardment of the external sand supply was 5–13 times larger than that without the bombardment of sand supply. This study indicates that gobi on the top of the Mogao Grottoes is one of the main dust sources as it has an abundance of sand supply from Mingsha Mountain as well as its richness in dust content. Hence, it is imperative to expand the existing sand control system on the top of the Mogao Grottoes in order to minimize the impact of dust hazards on the Mogao Grottoes.
期刊介绍:
The scope of Aeolian Research includes the following topics:
• Fundamental Aeolian processes, including sand and dust entrainment, transport and deposition of sediment
• Modeling and field studies of Aeolian processes
• Instrumentation/measurement in the field and lab
• Practical applications including environmental impacts and erosion control
• Aeolian landforms, geomorphology and paleoenvironments
• Dust-atmosphere/cloud interactions.