{"title":"Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection","authors":"B. K. M. Enturi, A. Suhasini, Narayana Satyala","doi":"10.1142/s0219467824500232","DOIUrl":null,"url":null,"abstract":"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.