Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
B. K. M. Enturi, A. Suhasini, Narayana Satyala
{"title":"Optimized Deep CNN with Deviation Relevance-based LBP for Skin Cancer Detection: Hybrid Metaheuristic Enabled Feature Selection","authors":"B. K. M. Enturi, A. Suhasini, Narayana Satyala","doi":"10.1142/s0219467824500232","DOIUrl":null,"url":null,"abstract":"Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Segmentation of skin lesions is a significant and demanding task in dermoscopy images. This paper proposes a new skin cancer recognition scheme, with: “Pre-processing, Segmentation, Feature extraction, Optimal Feature Selection and Classification”. Here, pre-processing is done with certain processes. The pre-processed images are segmented via the “Otsu Thresholding model”. The third phase is feature extraction, where Deviation Relevance-based “Local Binary Pattern (DRLBP), Gray-Level Co-Occurrence Matrix (GLCM) features and Gray Level Run-Length Matrix (GLRM) features” are extracted. From these extracted features, the optimal features are chosen via Particle Updated WOA (PU-WOA) model. Subsequently, classification occurs via Optimized DCNN and NN to classify the skin lesion. To make the classification more precise, the DCNN is optimized by the introduced algorithm. The result has shown a higher accuracy of 0.998737, when compared with other extant models like IPSO, IWOA, PSO+CNN, WOA+CNN and CNN schemes.
基于偏差相关的LBP优化深度CNN用于皮肤癌症检测:混合元启发式特征选择
皮肤病变的分割是皮肤镜图像中一项重要而艰巨的任务。本文提出了一种新的皮肤癌症识别方案:“预处理、分割、特征提取、最优特征选择和分类”。在这里,预处理是通过某些过程完成的。预处理的图像通过“Otsu阈值模型”进行分割。第三阶段是特征提取,提取基于偏差相关性的“局部二进制模式(DRLBP)、灰度共生矩阵(GLCM)特征和灰度游程矩阵(GLRM)特征”。从这些提取的特征中,通过粒子更新WOA(PU-WOA)模型来选择最优特征。随后,通过优化的DCNN和NN进行分类,以对皮肤损伤进行分类。为了使分类更加精确,利用引入的算法对DCNN进行了优化。与IPSO、IWOA、PSO+CNN、WOA+CNN和CNN方案等现有模型相比,该结果显示出0.998737的更高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信