C. Yudha, A. P. Hutama, M. Rahmawati, M. Arinawati, H. Aliwarga, H. Widiyandari, A. Purwanto
{"title":"Production of nickel-rich LiNi0.89Co0.08Al0.03O2 cathode material for high capacity NCA/graphite secondary battery fabrication","authors":"C. Yudha, A. P. Hutama, M. Rahmawati, M. Arinawati, H. Aliwarga, H. Widiyandari, A. Purwanto","doi":"10.1515/eng-2022-0051","DOIUrl":null,"url":null,"abstract":"Abstract Li-ion secondary battery is highly recommended as a power source to highly advanced battery electric vehicles. Among various types, the lithium nickel cobalt aluminum oxide (NCA) battery is considered suitable for high energy and power application. In this study, the NCA cathode material LiNi0.89Co0.08Al0.03O2 was produced via the oxalate co-precipitation technique to reduce the overall production cost and process complexity. Oxalic acid and a small amount of sodium hydroxide were used as the precipitant and pH regulator, respectively. Homogenous and loose metal oxalate precipitate formation was confirmed by X-ray diffraction (XRD), scanning electron microscopy, and Fourier-transform infrared spectroscopy analysis. XRD patterns of the as-obtained micron-sized NCA showed a well-layered hexagonal structure. The electrochemical properties of the cathode in the full cell were thoroughly examined. The specific discharge capacity of the as-obtained NCA in NCA/LiPF6/graphite at a current rate of 20 mA/g was 142 mAh/g. The as-prepared NCA sample had capacity retention of 80% after being charged and discharged at 0.1 A/g for 101 cycles. Scaling up of NCA production process to 2 kg per batch was conducted and evaluation of NCA product quality was performed by material characterization. Based on the overall results and considering the overall process, such an approach is expected to be developed and improved for future large-scale production purposes.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":"12 1","pages":"501 - 510"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Li-ion secondary battery is highly recommended as a power source to highly advanced battery electric vehicles. Among various types, the lithium nickel cobalt aluminum oxide (NCA) battery is considered suitable for high energy and power application. In this study, the NCA cathode material LiNi0.89Co0.08Al0.03O2 was produced via the oxalate co-precipitation technique to reduce the overall production cost and process complexity. Oxalic acid and a small amount of sodium hydroxide were used as the precipitant and pH regulator, respectively. Homogenous and loose metal oxalate precipitate formation was confirmed by X-ray diffraction (XRD), scanning electron microscopy, and Fourier-transform infrared spectroscopy analysis. XRD patterns of the as-obtained micron-sized NCA showed a well-layered hexagonal structure. The electrochemical properties of the cathode in the full cell were thoroughly examined. The specific discharge capacity of the as-obtained NCA in NCA/LiPF6/graphite at a current rate of 20 mA/g was 142 mAh/g. The as-prepared NCA sample had capacity retention of 80% after being charged and discharged at 0.1 A/g for 101 cycles. Scaling up of NCA production process to 2 kg per batch was conducted and evaluation of NCA product quality was performed by material characterization. Based on the overall results and considering the overall process, such an approach is expected to be developed and improved for future large-scale production purposes.
期刊介绍:
Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.