Adaptive Traction Drive Control Algorithm for Electrical Energy Consumption Minimisation of Autonomous Unmanned Aerial Vehicle

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Korneyev, M. Gorobetz, Ivars Alps, L. Ribickis
{"title":"Adaptive Traction Drive Control Algorithm for Electrical Energy Consumption Minimisation of Autonomous Unmanned Aerial Vehicle","authors":"A. Korneyev, M. Gorobetz, Ivars Alps, L. Ribickis","doi":"10.2478/ecce-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract The paper aims at researching and developing an adaptive control system algorithm and its implementation and integration in the control system of the existing unmanned aerial vehicle (UAV). The authors describe the mathematical model of UAV and target function for energy consumption minimisation and possible searching algorithms for UAV optimal control from an energy efficiency perspective. There are two main goals: to minimise energy consumption and to develop and investigate an adaptive control algorithm for UAV traction drive in order to increase energy efficiency. The optimal control algorithm is based on two target function values, when comparing and generating corresponding control signals. The main advantage of the proposed algorithm is its unification and usability in any electrical UAV with a different number of traction drives, different or variable mass and other configuration differences without any initial manual setup. Any electric UAV is able to move with maximal energy efficiency using the proposed algorithm.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"15 1","pages":"62 - 70"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The paper aims at researching and developing an adaptive control system algorithm and its implementation and integration in the control system of the existing unmanned aerial vehicle (UAV). The authors describe the mathematical model of UAV and target function for energy consumption minimisation and possible searching algorithms for UAV optimal control from an energy efficiency perspective. There are two main goals: to minimise energy consumption and to develop and investigate an adaptive control algorithm for UAV traction drive in order to increase energy efficiency. The optimal control algorithm is based on two target function values, when comparing and generating corresponding control signals. The main advantage of the proposed algorithm is its unification and usability in any electrical UAV with a different number of traction drives, different or variable mass and other configuration differences without any initial manual setup. Any electric UAV is able to move with maximal energy efficiency using the proposed algorithm.
自主无人机电能消耗最小化的自适应牵引驱动控制算法
摘要本文旨在研究和开发一种自适应控制系统算法及其在现有无人机控制系统中的实现和集成。作者描述了无人机的数学模型和能耗最小化的目标函数,以及从能效角度出发的无人机最优控制的可能搜索算法。有两个主要目标:最大限度地减少能源消耗,开发和研究无人机牵引驱动的自适应控制算法,以提高能源效率。当比较和生成相应的控制信号时,最优控制算法基于两个目标函数值。所提出的算法的主要优点是其在任何具有不同牵引驱动器数量、不同或可变质量和其他配置差异的电动无人机中的统一性和可用性,而无需任何初始手动设置。使用所提出的算法,任何电动无人机都能够以最大的能量效率移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信