{"title":"A shield of defense: Developing ballistic composite panels with effective electromagnetic interference shielding absorption","authors":"Nisrin Rizek Abdelal","doi":"10.1016/j.dt.2023.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference (EMI) shielding capabilities through absorption. Six fiber-reinforced epoxy composite panels, each with a different fabric material and stacking sequence, have been fabricated using a hand-layup vacuum bagging process. Two panels made of Kevlar and glass fibers, referred to as (K-NIJ) and (G-NIJ), have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA (9 mm × 19 mm FMJ 124 g) test. Three panels, namely, a hybrid of Kevlar and glass (H–S), glass with ceramic particles (C–S), and glass with recycled rubber (R–S) have been impacted by the bullet at the center, while the fourth panel made of glass fiber (G-S) has been impacted at the side. EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method. Results indicate that four panels (K-NIJ, G-NIJ, H–S, and G-S) are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity. However, under such conditions, these panels may experience localized delamination with variable severity. The EMI measurements reveal that the highest absorptivity observed is 88% for the K-NIJ panel at 10.8 GHz, while all panels maintain an average absorptivity above 65%. All panels act as a lossy medium with a peak absorptivity at different frequencies, with K-NIJ and H–S panels demonstrating the highest absorptivity. In summary, the study results in the development of a novel, cost-effective, multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties. The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency; no bullet penetration or back face signature is observed, and it also demonstrates high EMI shielding absorption. Overall, the materials developed show great promise for various applications, including the military and defense.</p></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"35 ","pages":"Pages 123-136"},"PeriodicalIF":5.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214914723002325/pdfft?md5=19e6b88acaa9f898d0dbdeb5be7a39c6&pid=1-s2.0-S2214914723002325-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914723002325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference (EMI) shielding capabilities through absorption. Six fiber-reinforced epoxy composite panels, each with a different fabric material and stacking sequence, have been fabricated using a hand-layup vacuum bagging process. Two panels made of Kevlar and glass fibers, referred to as (K-NIJ) and (G-NIJ), have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA (9 mm × 19 mm FMJ 124 g) test. Three panels, namely, a hybrid of Kevlar and glass (H–S), glass with ceramic particles (C–S), and glass with recycled rubber (R–S) have been impacted by the bullet at the center, while the fourth panel made of glass fiber (G-S) has been impacted at the side. EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method. Results indicate that four panels (K-NIJ, G-NIJ, H–S, and G-S) are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity. However, under such conditions, these panels may experience localized delamination with variable severity. The EMI measurements reveal that the highest absorptivity observed is 88% for the K-NIJ panel at 10.8 GHz, while all panels maintain an average absorptivity above 65%. All panels act as a lossy medium with a peak absorptivity at different frequencies, with K-NIJ and H–S panels demonstrating the highest absorptivity. In summary, the study results in the development of a novel, cost-effective, multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties. The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency; no bullet penetration or back face signature is observed, and it also demonstrates high EMI shielding absorption. Overall, the materials developed show great promise for various applications, including the military and defense.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.