J. Klein-Wiele, A. Blumenstein, P. Simon, J. Ihlemann
{"title":"Laser interference ablation by ultrashort UV laser pulses via diffractive beam management","authors":"J. Klein-Wiele, A. Blumenstein, P. Simon, J. Ihlemann","doi":"10.1515/aot-2019-0068","DOIUrl":null,"url":null,"abstract":"Abstract The fabrication of periodic surface patterns on various materials by ultrashort ultraviolet (UV) laser pulses is reviewed. Laser interference ablation using two or more coherent beams leads to deterministic, strictly periodic patterns. The generation of the interfering beams is accomplished by diffractive optical elements like gratings, grating systems or computer-generated holograms. The recombination of the diffracted beams is performed by optical imaging or diffractive beam management. Ultrashort UV pulses are especially suited for generating micron- to submicron-sized deterministic periodic patterns on metals and semiconductors.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"9 1","pages":"41 - 52"},"PeriodicalIF":2.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2019-0068","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2019-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract The fabrication of periodic surface patterns on various materials by ultrashort ultraviolet (UV) laser pulses is reviewed. Laser interference ablation using two or more coherent beams leads to deterministic, strictly periodic patterns. The generation of the interfering beams is accomplished by diffractive optical elements like gratings, grating systems or computer-generated holograms. The recombination of the diffracted beams is performed by optical imaging or diffractive beam management. Ultrashort UV pulses are especially suited for generating micron- to submicron-sized deterministic periodic patterns on metals and semiconductors.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.