Sandwich-like interfacial structured polydopamine (PDA)/Wax/PDA: A novel design for simultaneously improving the safety and mechanical properties of highly explosive-filled polymer composites
Cong-mei Lin , Shi-jun Liu , Yu-shi Wen , Jia-hui Liu , Guan-song He , Xu Zhao , Zhi-jian Yang , Ling Ding , Li-ping Pan , Jiang Li , Shao-yun Guo
{"title":"Sandwich-like interfacial structured polydopamine (PDA)/Wax/PDA: A novel design for simultaneously improving the safety and mechanical properties of highly explosive-filled polymer composites","authors":"Cong-mei Lin , Shi-jun Liu , Yu-shi Wen , Jia-hui Liu , Guan-song He , Xu Zhao , Zhi-jian Yang , Ling Ding , Li-ping Pan , Jiang Li , Shao-yun Guo","doi":"10.1016/j.enmf.2022.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>High melting point paraffin wax (HPW) is a novel desensitizer that has the potential to achieve low sensitivity of energetic crystals, such as 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). However, first-principles calculations confirmed that interface deterioration occurred due to a weak interfacial connection. In this work, the polydopamine (PDA)/HPW/PDA with a sandwich-like interfacial structure was prepared using three simple steps to improve safety performance, thermal stability, and mechanical properties. The theoretical and experimental results suggested that the PDA acted as a double-sided tape to adhere to the adjacent HMX/HPW layer or HPW/polymer binder layer, thus substantially enhancing the interfacial interaction. While maintaining higher safety performance (impact energy: 11∼13 J) than that of HMX (5 J), the new design improved the <em>β</em>-<em>δ</em> polymorphic transition temperature of HMX to 219.4 °C for HMX@PDA@HPW@PDA, which was higher than that of HMX@HPW (202.8 °C) and core@double-shell HMX@PDA@HPW (208.9 °C). Among the modified energetic composites, polymer-bonded explosives (PBXs) based on HMX@PDA@HPW@PDA exhibited the optimum mechanical performance, including the storage modulus and tensile fracture energy, which were 43.5% and 77.1% higher than those of PBXs based on raw HMX, respectively. The achieved favorable systematical enhancement in thermal stability, mechanical properties, and safety performance shows that such a sandwich-like interfacial structure has great potential for application for HMX-based formulation used in complex environments.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647222000367/pdfft?md5=630bb0e51430135bd14cf1c4f53d7f25&pid=1-s2.0-S2666647222000367-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647222000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High melting point paraffin wax (HPW) is a novel desensitizer that has the potential to achieve low sensitivity of energetic crystals, such as 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). However, first-principles calculations confirmed that interface deterioration occurred due to a weak interfacial connection. In this work, the polydopamine (PDA)/HPW/PDA with a sandwich-like interfacial structure was prepared using three simple steps to improve safety performance, thermal stability, and mechanical properties. The theoretical and experimental results suggested that the PDA acted as a double-sided tape to adhere to the adjacent HMX/HPW layer or HPW/polymer binder layer, thus substantially enhancing the interfacial interaction. While maintaining higher safety performance (impact energy: 11∼13 J) than that of HMX (5 J), the new design improved the β-δ polymorphic transition temperature of HMX to 219.4 °C for HMX@PDA@HPW@PDA, which was higher than that of HMX@HPW (202.8 °C) and core@double-shell HMX@PDA@HPW (208.9 °C). Among the modified energetic composites, polymer-bonded explosives (PBXs) based on HMX@PDA@HPW@PDA exhibited the optimum mechanical performance, including the storage modulus and tensile fracture energy, which were 43.5% and 77.1% higher than those of PBXs based on raw HMX, respectively. The achieved favorable systematical enhancement in thermal stability, mechanical properties, and safety performance shows that such a sandwich-like interfacial structure has great potential for application for HMX-based formulation used in complex environments.