Toby Simon , Philipp Schumann , Michael Bieri , Kathrin Schirner , Eleonora Widmer
{"title":"Hyperoncotic human albumin solutions for intravenous fluid therapy: Effectiveness of pathogen safety and purification methods, and clinical safety","authors":"Toby Simon , Philipp Schumann , Michael Bieri , Kathrin Schirner , Eleonora Widmer","doi":"10.1016/j.bsheal.2022.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Albumin solutions derived from human plasma have demonstrated clinical benefits as intravenous fluid therapy in clinical settings such as liver disease, sepsis, intensive care, and surgery. For all plasma-derived medicinal products, there is a potential risk from pathogens, including relevant blood-borne viruses, emerging viruses, and prion proteins. To minimize the risk of transmissible infections, the production of human albumin solutions includes rigorous donor selection and plasma testing, and effective pathogen removal and inactivation methods such as fractionation and pasteurization. Compliance with international pharmacopeial standards for purity and prekallikrein activator and aluminum content is crucial, as is post-marketing pharmacovigilance for the continuous monitoring of adverse events. This review focuses on the effectiveness of manufacturing methods in the production of plasma-derived albumin, to ensure the safety of hyperoncotic solutions for volume expansion. We evaluated evidence identified through online database (PubMed) searches and from unpublished sources, on the manufacturing and pathogen safety of plasma-derived albumin solutions. The results confirmed the already established and evolving pathogen reduction capacity of the reviewed manufacturing methods. Up-to-date post-marketing pharmacovigilance data and log<sub>10</sub> reduction factors for known and emerging pathogens during albumin production are included. Towards the goal of ever-increasing clinical safety, potential areas of improvement, such as compliance rates for the completion of donor health questionnaires, are also discussed. Taken together, the current manufacturing and pathogen reduction steps result in albumin products of greater purity than previous-generation products, with a high margin of pathogen safety against known and emerging pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</p></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053622001793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Albumin solutions derived from human plasma have demonstrated clinical benefits as intravenous fluid therapy in clinical settings such as liver disease, sepsis, intensive care, and surgery. For all plasma-derived medicinal products, there is a potential risk from pathogens, including relevant blood-borne viruses, emerging viruses, and prion proteins. To minimize the risk of transmissible infections, the production of human albumin solutions includes rigorous donor selection and plasma testing, and effective pathogen removal and inactivation methods such as fractionation and pasteurization. Compliance with international pharmacopeial standards for purity and prekallikrein activator and aluminum content is crucial, as is post-marketing pharmacovigilance for the continuous monitoring of adverse events. This review focuses on the effectiveness of manufacturing methods in the production of plasma-derived albumin, to ensure the safety of hyperoncotic solutions for volume expansion. We evaluated evidence identified through online database (PubMed) searches and from unpublished sources, on the manufacturing and pathogen safety of plasma-derived albumin solutions. The results confirmed the already established and evolving pathogen reduction capacity of the reviewed manufacturing methods. Up-to-date post-marketing pharmacovigilance data and log10 reduction factors for known and emerging pathogens during albumin production are included. Towards the goal of ever-increasing clinical safety, potential areas of improvement, such as compliance rates for the completion of donor health questionnaires, are also discussed. Taken together, the current manufacturing and pathogen reduction steps result in albumin products of greater purity than previous-generation products, with a high margin of pathogen safety against known and emerging pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).