{"title":"Evaluation of the Trade-Off between Ground Delays and Intersecting Departures under Various Pilot Acceptance Rate Scenarios","authors":"K. Dönmez","doi":"10.1177/03611981231179168","DOIUrl":null,"url":null,"abstract":"The increasing demand for air traffic at airports necessitates the efficient utilization of ground facilities such as runways and taxiways. Intersecting departures, in which one or more aircraft take off from intersecting points on the runway, is a commonly used approach to increase runway capacity and reduce ground delays and taxi times, as well as noise and air pollution. However, the procedure carries potential risks such as runway incursion and excursion. This creates a trade-off between minimizing the number of intersecting departures and minimizing ground delays. In practice, the decision to perform an intersecting departure is ultimately up to the pilot, resulting in uncertainty in the acceptance rate of these types of takeoffs. In this study, a departure sequencing model was developed for a single-runway airport that considers intersecting departures and various pilot acceptance rate scenarios. The primary objective of the model is to minimize total ground delay, including taxi delays, runway holds, and conflict holds. The secondary objective is to minimize the number of intersecting departures by directing the most operationally critical aircraft to the intersection takeoff. The epsilon constraint method—a multi-objective scalarization method—was used to reveal the trade-offs between the objective functions. The results of the model were compared with a traditional scenario that only allows take offs from the beginning of the runway. As a result, average delay savings ranged from 17.1% to 31.5% in various acceptance rate scenarios, as well as average taxi time savings ranging from 4.9% to 8.4% compared with the traditional scenario.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"2677 1","pages":"733 - 746"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03611981231179168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for air traffic at airports necessitates the efficient utilization of ground facilities such as runways and taxiways. Intersecting departures, in which one or more aircraft take off from intersecting points on the runway, is a commonly used approach to increase runway capacity and reduce ground delays and taxi times, as well as noise and air pollution. However, the procedure carries potential risks such as runway incursion and excursion. This creates a trade-off between minimizing the number of intersecting departures and minimizing ground delays. In practice, the decision to perform an intersecting departure is ultimately up to the pilot, resulting in uncertainty in the acceptance rate of these types of takeoffs. In this study, a departure sequencing model was developed for a single-runway airport that considers intersecting departures and various pilot acceptance rate scenarios. The primary objective of the model is to minimize total ground delay, including taxi delays, runway holds, and conflict holds. The secondary objective is to minimize the number of intersecting departures by directing the most operationally critical aircraft to the intersection takeoff. The epsilon constraint method—a multi-objective scalarization method—was used to reveal the trade-offs between the objective functions. The results of the model were compared with a traditional scenario that only allows take offs from the beginning of the runway. As a result, average delay savings ranged from 17.1% to 31.5% in various acceptance rate scenarios, as well as average taxi time savings ranging from 4.9% to 8.4% compared with the traditional scenario.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.