Quercetin-3-O-β-D-glucuronide inhibits mitochondria pathway-mediated platelet apoptosis via the phosphatidylinositol-3-kinase/AKT pathway in immunological bone marrow failure
IF 4.3 3区 医学Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE
L. Xia, Aiping Zhang, Qin Zheng, Jie Ding, Zhe Jin, Hai Yu, W. Wong, He-Ping Yu
{"title":"Quercetin-3-O-β-D-glucuronide inhibits mitochondria pathway-mediated platelet apoptosis via the phosphatidylinositol-3-kinase/AKT pathway in immunological bone marrow failure","authors":"L. Xia, Aiping Zhang, Qin Zheng, Jie Ding, Zhe Jin, Hai Yu, W. Wong, He-Ping Yu","doi":"10.4103/2311-8571.326772","DOIUrl":null,"url":null,"abstract":"Objective: Quercetin-3-O-β-D-glucuronide (QG) can alleviate immunological bone marrow failure (BMF) by increasing platelet counts. However, the principal mechanism is less known. This study aimed at deciphering the possible underlying mechanism of QG that is indicated in thrombocytopenic purpura. Methods: In vitro and in vivo experiments were carried out for investigating the mechanism behind QG-facilitated inhibition of mitochondrial pathway-mediated excessive apoptosis of platelets through the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. Results: Our results revealed that QG, the main effective ingredient of Herba Sarcandrae, increases the number of platelets and decreases the expression of Bax, Bad, Bid, and caspase-9 in immunological BMF, indicating the inhibition of mitochondrial pathway-mediated apoptosis. Moreover, we found that the protein and mRNA expressions, as well as the phosphorylated levels of PI3K and AKT, were increased significantly by QG, suggesting the activation of the PI3K/AKT pathway. Furthermore, the inhibition of the PI3K/AKT pathway by LY294002 antagonizes the effects of QG on platelet counts and mitochondrial pathway-mediated apoptosis. Conclusion: We demonstrate that QG inhibits the mitochondria pathway-mediated platelet apoptosis via the PI3K/AKT pathway in immunological BMF. This study thus sheds light on exploring the possible regulatory mechanism of traditional Chinese medicine in the treatment of thrombocytopenia induced by BMF.","PeriodicalId":23692,"journal":{"name":"World Journal of Traditional Chinese Medicine","volume":"8 1","pages":"115 - 122"},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Traditional Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/2311-8571.326772","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 9
Abstract
Objective: Quercetin-3-O-β-D-glucuronide (QG) can alleviate immunological bone marrow failure (BMF) by increasing platelet counts. However, the principal mechanism is less known. This study aimed at deciphering the possible underlying mechanism of QG that is indicated in thrombocytopenic purpura. Methods: In vitro and in vivo experiments were carried out for investigating the mechanism behind QG-facilitated inhibition of mitochondrial pathway-mediated excessive apoptosis of platelets through the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. Results: Our results revealed that QG, the main effective ingredient of Herba Sarcandrae, increases the number of platelets and decreases the expression of Bax, Bad, Bid, and caspase-9 in immunological BMF, indicating the inhibition of mitochondrial pathway-mediated apoptosis. Moreover, we found that the protein and mRNA expressions, as well as the phosphorylated levels of PI3K and AKT, were increased significantly by QG, suggesting the activation of the PI3K/AKT pathway. Furthermore, the inhibition of the PI3K/AKT pathway by LY294002 antagonizes the effects of QG on platelet counts and mitochondrial pathway-mediated apoptosis. Conclusion: We demonstrate that QG inhibits the mitochondria pathway-mediated platelet apoptosis via the PI3K/AKT pathway in immunological BMF. This study thus sheds light on exploring the possible regulatory mechanism of traditional Chinese medicine in the treatment of thrombocytopenia induced by BMF.