Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kiho Kim, In Sik Min, Tae Hee Kim, Do Hyeon Kim, Seungwon Hwang, Kyowon Kang, Kyubeen Kim, Sangun Park, Jongmin Lee, Young Uk Cho, Jung Woo Lee, Woon-Hong Yeo, Young Min Song, Youngmee Jung, Ki Jun Yu
{"title":"Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring","authors":"Kiho Kim, In Sik Min, Tae Hee Kim, Do Hyeon Kim, Seungwon Hwang, Kyowon Kang, Kyubeen Kim, Sangun Park, Jongmin Lee, Young Uk Cho, Jung Woo Lee, Woon-Hong Yeo, Young Min Song, Youngmee Jung, Ki Jun Yu","doi":"10.1038/s41528-023-00276-x","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) is attracting attention as a next-generation cancer treatment that can selectively destroy malignant tissues, exhibit fewer side effects, and lack pain during treatments. Implantable PDT systems have recently been developed to resolve the issues of bulky and expensive conventional PDT systems and to implement continuous and repetitive treatment. Existing implantable PDT systems, however, are not able to perform multiple functions simultaneously, such as modulating light intensity, measuring, and transmitting tumor-related data, resulting in the complexity of cancer treatment. Here, we introduce a flexible and fully implantable wireless optoelectronic system capable of continuous and effective cancer treatment by fusing PDT and hyperthermia and enabling tumor size monitoring in real-time. This system exploits micro inorganic light-emitting diodes (μ-LED) that emit light with a wavelength of 624 nm, designed not to affect surrounding normal tissues by utilizing a fully programmable light intensity of μ-LED and precisely monitoring the tumor size by Si phototransistor during a long-term implantation (2–3 weeks). The superiority of simultaneous cancer treatment and tumor size monitoring capabilities of our system operated by wireless power and data transmissions with a cell phone was confirmed through in vitro experiments, ray-tracing simulation results, and a tumor xenograft mouse model in vivo. This all-in-one single system for cancer treatment offers opportunities to not only enable effective treatment of tumors located deep in the tissue but also enable precise and continuous monitoring of tumor size in real-time.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00276-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00276-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) is attracting attention as a next-generation cancer treatment that can selectively destroy malignant tissues, exhibit fewer side effects, and lack pain during treatments. Implantable PDT systems have recently been developed to resolve the issues of bulky and expensive conventional PDT systems and to implement continuous and repetitive treatment. Existing implantable PDT systems, however, are not able to perform multiple functions simultaneously, such as modulating light intensity, measuring, and transmitting tumor-related data, resulting in the complexity of cancer treatment. Here, we introduce a flexible and fully implantable wireless optoelectronic system capable of continuous and effective cancer treatment by fusing PDT and hyperthermia and enabling tumor size monitoring in real-time. This system exploits micro inorganic light-emitting diodes (μ-LED) that emit light with a wavelength of 624 nm, designed not to affect surrounding normal tissues by utilizing a fully programmable light intensity of μ-LED and precisely monitoring the tumor size by Si phototransistor during a long-term implantation (2–3 weeks). The superiority of simultaneous cancer treatment and tumor size monitoring capabilities of our system operated by wireless power and data transmissions with a cell phone was confirmed through in vitro experiments, ray-tracing simulation results, and a tumor xenograft mouse model in vivo. This all-in-one single system for cancer treatment offers opportunities to not only enable effective treatment of tumors located deep in the tissue but also enable precise and continuous monitoring of tumor size in real-time.

Abstract Image

Abstract Image

用于模块化癌症治疗和实时监测的完全植入式无电池无线光电系统
光动力疗法(PDT)可选择性地破坏恶性组织,副作用小,治疗过程中无痛苦,作为新一代癌症治疗方法备受关注。为了解决传统光导疗法系统体积庞大、价格昂贵的问题,并实现连续和重复治疗,最近开发出了植入式光导疗法系统。然而,现有的植入式光导治疗系统无法同时实现多种功能,如调节光强度、测量和传输肿瘤相关数据,从而导致癌症治疗的复杂性。在这里,我们介绍了一种灵活、完全可植入的无线光电系统,该系统融合了光动力疗法和热疗技术,能够持续、有效地治疗癌症,并能实时监测肿瘤大小。该系统利用微型无机发光二极管(μ-LED)发出波长为 624 纳米的光,通过利用完全可编程的μ-LED 光强度,在长期植入过程中(2-3 周)通过硅光电晶体管精确监测肿瘤大小,从而避免影响周围正常组织。通过体外实验、射线追踪模拟结果和体内肿瘤异种移植小鼠模型,证实了我们的系统通过手机无线供电和数据传输同时进行癌症治疗和肿瘤大小监测功能的优越性。这种用于癌症治疗的一体化单一系统不仅能有效治疗组织深部的肿瘤,还能精确、持续地实时监测肿瘤大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信