{"title":"Construction of the Morse – Bott Energy Function for Regular Topological Flows","authors":"Olga V. Pochinka, Svetlana Kh. Zinina","doi":"10.1134/S1560354721040031","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider regular topological flows on closed <span>\\(n\\)</span>-manifolds. Such flows have a hyperbolic (in the topological sense) chain recurrent set consisting of a finite number of fixed points and periodic orbits. The class of such flows includes, for example, Morse – Smale flows, which are closely related to the topology of the supporting manifold. This connection is provided by the existence of the Morse – Bott energy function for the Morse – Smale flows. It is well known that, starting from dimension 4, there exist nonsmoothing topological manifolds, on which dynamical systems can be considered only in a continuous category. The existence of continuous analogs of regular flows on any topological manifolds is an open question, as is the existence of energy functions for such flows. In this paper, we study the dynamics of regular topological flows, investigate the topology of the embedding and the asymptotic behavior of invariant manifolds of fixed points and periodic orbits. The main result is the construction of the Morse – Bott energy function for such flows, which ensures their close connection with the topology of the ambient manifold.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"26 4","pages":"350 - 369"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354721040031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider regular topological flows on closed \(n\)-manifolds. Such flows have a hyperbolic (in the topological sense) chain recurrent set consisting of a finite number of fixed points and periodic orbits. The class of such flows includes, for example, Morse – Smale flows, which are closely related to the topology of the supporting manifold. This connection is provided by the existence of the Morse – Bott energy function for the Morse – Smale flows. It is well known that, starting from dimension 4, there exist nonsmoothing topological manifolds, on which dynamical systems can be considered only in a continuous category. The existence of continuous analogs of regular flows on any topological manifolds is an open question, as is the existence of energy functions for such flows. In this paper, we study the dynamics of regular topological flows, investigate the topology of the embedding and the asymptotic behavior of invariant manifolds of fixed points and periodic orbits. The main result is the construction of the Morse – Bott energy function for such flows, which ensures their close connection with the topology of the ambient manifold.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.